成长最优投资组合(GOP)与其他投资组合的对比分析
在投资领域,如何选择最优的投资组合一直是投资者关注的核心问题。成长最优投资组合(GOP)和基于均值 - 方差的投资组合选择方法是两种重要的理论。下面将对这两种方法进行详细的对比分析,并探讨GOP超越其他投资组合所需的时间。
1. 资本增长与均值 - 方差方法
在70年代初,由Markowitz(1952)提出的均值 - 方差方法是投资组合选择的主流理论。而通过最大化增长来选择投资组合的方法使用较少,但引起了学术界的广泛关注。人们特别关注这两种方法是否可以统一,或者它们是否本质上不同。
1.1 离散时间情况
在离散时间框架下,均值 - 方差有效投资组合是指在具有相同平均回报的情况下,其他投资组合的方差等于或更高的投资组合。这种投资组合是通过求解二次优化问题得到的。该方法的理论依据通常需要二次效用函数或对回报分布类的一些相当严格的假设,最常见的是假设回报呈正态分布。
将这种投资组合选择方法与GOP进行比较,可得出以下一般结论:
- GOP通常不是均值 - 方差有效的 :Hakansson(1971a)构建的例子表明,GOP可能远离有效前沿。这并不奇怪,因为均值 - 方差选择与二次效用相关,而GOP的最优性与对数效用相关。只有对于特定的分布,GOP才是有效的。例如,如果分布在整个实轴上有支撑,那么GOP将所有资金投入无风险资产,此时它是有效的,正态分布的回报就是这种情况。
- 均值 - 方差有效投资组合有破产风险 :如果某些资产的增长率为正且投资机会无限可分,那么GOP在短期和长期内都没有破产的概