增长最优投资组合(GOP)的应用与金融资产定价
1. GOP表现分析
在投资领域,最大化超越其他投资组合的概率这一目标面临一定挑战。要获得较高的置信水平,往往需要不切实际的长时间跨度。例如,有研究表明,要有95%的把握击败全现金策略需208年,击败全股票策略则需4700年。虽然现有应用GOP的尝试看似成功,但这多为“轶事证据”,不能正式证明其超越竞争策略所需的周期较短。
目前,为了确定GOP超越给定替代策略所需的时间,需要在根据实际市场数据校准的更现实模型中进行进一步的系统分析,不过相关研究结果在现有文献中暂未出现。
部分研究GOP应用时财富分配的论文有[Hakansson (1971a)]、[Gressis et al. (1974)]等。还有研究将GOP与n阶随机占优相关联,指出若投资组合X对投资组合Y表现出n阶随机占优,那么X的几何均值需高于Y。
2. GOP在金融资产和衍生品定价中的应用
GOP的计价单位属性使其被一些人认为可作为完整和不完整市场中衍生品的便捷定价工具。以下是相关的具体内容:
2.1 基本假设与定义
给定一组d + 1种资产作为半鞅,假设GOP,即S(δ),在区间[0, T]上是一个定义明确、非爆炸性的投资组合过程。作出假设:对于i ∈{0, …, d},过程 ˆS(i)(t) ≜S(i)(t) / S(δ)(t) 是一个局部鞅。这一假设排除了该过程是上鞅但不是局部鞅的情况。
基于此假设,GOP会产生一个鞅密度。对于任何S(δ) ∈Θ(S), ˆS(δ)(t) ≜S(δ)(t) / S(δ)(t) = S(δ)(t) / S(0)(t)Z(t) 是一