实证对数最优投资组合选择与交易成本策略研究
1. 最近邻策略
最近邻策略是投资组合选择中的一种重要方法。首先定义一个无限专家数组 (B(k,ℓ) = {b(k,ℓ)(·)}),其中 (0 < k, ℓ) 为整数,(k) 是近期窗口长度。对于每个 (ℓ),选择 (pℓ∈(0, 1)),满足 (\lim_{ℓ→∞}pℓ = 0),并令 (\hat{ℓ}= ⌊pℓn⌋)。
在给定时间 (n),专家会在过去寻找 (\hat{ℓ}) 个最近邻匹配。对于固定正整数 (k, ℓ)((n > k + \hat{ℓ}+ 1)),引入最近邻匹配集合 (\hat{J}(k,ℓ) n):
(\hat{J}(k,ℓ)_n = {i; k + 1 ≤ i ≤ n) 使得 (x {i - 1}^{i - k}) 是 (x_{n - 1}^{n - k}) 在 (x_{k}^{1},…, x_{n - 2}^{n - k - 1}) 中的 (\hat{ℓ}) 个最近邻之一 (})
专家定义为:
(b(k,ℓ)(x_{n - 1}^{1}) = \arg \max_{b∈∆d} \prod_{i∈\hat{J}(k,ℓ)_n} ⟨b, x_i⟩)
即 (b(k,ℓ)_n) 是根据这些最近邻之后的回报确定的固定投资组合向量。这些专家的混合方式与之前类似。
当对于任何向量 (s = s_{k}^{1}),随机变量 (|X_{k}^{1} - s|) 具有连续分布函数时,称平局发生的概率为零。在满足 (\lim_{ℓ→∞}pℓ = 0) 和平局发生概率为零的条件下,投资组合方案 (BNN) 对于所有平稳遍历过程((E{|\lo