平稳时间序列的非参数序贯预测策略
1. 引言
在时间序列预测领域,非参数序贯预测方法为处理平稳和遍历序列提供了强大的工具。本文将深入探讨多种预测策略,包括核基预测、最近邻基预测、广义线性估计以及处理无界响应变量的分区基预测等方法,分析它们的原理、优势和应用条件。
2. 关键理论基础
2.1 鞅差序列的大数定律
要证明下式几乎必然成立:
[
\lim_{n \to \infty} \frac{1}{n} \sum_{i = 1}^{n} \left(Y_i - E{Y_i|X_i^{-\infty}, Y_{i - 1}^{-\infty}}\right) \left(E{Y_i|Y_{i - 1}^{-\infty}} - g_i(X_i^1, Y_{i - 1}^1)\right) = 0
]
这可由Chow(1965)提出的鞅差序列的经典强大数定律得出。若({Z_i})是鞅差序列,且满足(\sum_{n = 1}^{\infty} \frac{EZ_n^2}{n^2} < \infty),则(\lim_{n \to \infty} \frac{1}{n} \sum_{i = 1}^{n} Z_i = 0)几乎必然成立。这里的鞅差(Z_i = \left(Y_i - E{Y_i|X_i^{-\infty}, Y_{i - 1}^{-\infty}}\right) \left(E{Y_i|X_i^{-\infty}, Y_{i - 1}^{-\infty}} - g_i(X_i^1, Y_{i - 1}^1)\right))有界于(4B^2)。