18、平稳时间序列的非参数序贯预测与美式看跌期权的实证定价

平稳时间序列的非参数序贯预测与美式看跌期权的实证定价

平稳时间序列的非参数序贯预测

在时间序列预测领域,非参数方法为解决复杂问题提供了有效的途径。以下将介绍几种常见的非参数预测策略。

基于最近邻的预测策略

该策略使用特定的基本专家 (h_{n}^{(k,\ell)}) 进行预测。在时间 (n) 时,基本专家 (h_{n}^{(k,\ell)}) 的定义如下:
[h_{n}^{(k,\ell)}(x_{1}^{n}, y_{1}^{n - 1}) = T_{\min{n\delta,\ell}}\left(\frac{\sum_{t\in J_{n}^{(k,\ell)}} y_{t}}{\vert J_{n}^{(k,\ell)}\vert}\right)]
其中 (n > k + 1),如果求和非空则按上式计算,否则为 0,且 (0 < \delta < \frac{1}{8})。专家池的混合方式与基于直方图的策略相同。
当满足一定条件,如选择 (\eta_t = \frac{1}{\sqrt{t}}),且对于每个向量 (s),随机变量 (|(X_{1}^{k + 1}, Y_{1}^{k}) - s|) 具有连续分布函数时,此最近邻策略对于所有联合平稳且遍历的过程 ({(X_n, Y_n)} {-\infty}^{\infty})(满足 (E{Y {0}^{4}} < \infty))是普遍一致的。

广义线性估计

基本预测器 (h_{n}^{(k,\ell)}) 生成的预测形式为:
[h_{n}^{(k,\ell)}(x_{1}^{n}, y_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值