美式看跌期权的实证定价
1. 美式期权的实证定价与最优执行
在对美式期权进行定价和确定最优执行时间时,我们会用到一些重要的概念和方法。
1.1 自助抽样
对于自助抽样,我们生成独立同分布(i.i.d.)的随机变量 (T_1, \ldots, T_n),它们在 (1, \ldots, N - T) 上均匀分布,并且定义:
[X_{i,t} \triangleq \frac{X_{T_i + t}}{X_{T_i}}, \quad i = 1, \ldots, n]
1.2 最优停止时间与价格估计
如果延续价值 (q_t(x))((t = 1, \ldots, T))已知,那么对于路径 (X_{i,1}, \ldots, X_{i,T}) 的最优停止时间 (\tau_i) 可以计算为:
[\tau_i = \min {1 \leq s \leq T : q_s (X_{i,s}) \leq f_s (X_{i,s})}]
此时,期权价格 (V_0) 可以通过以下平均来估计:
[\frac{1}{n} \sum_{i = 1}^{n} f_{\tau_i} (X_{\tau_i})]
然而,延续价值 (q_t(x)) 通常是未知的。一种解决方法是采用分裂法,将样本 ({X_{i,1}, \ldots, X_{i,T}} {i = 1}^{n}) 分裂为两个样本:({X {i,1}, \ldots, X_{i,T}} {i = 1}^{m}) 和 ({X {i,1}, \ldots, X_{i,T}} {i = m + 1}^{