可逆反应系统的转移图
1. 可逆系统的转移图
在特定计算模型中引入可逆性时,自然会产生一个问题:这将如何影响模型的计算属性?对于反应系统而言,交互过程是唯一的计算方式。因此,在研究特定系统的高级计算属性时,应从考察其中包含的过程入手。由于任何系统可能包含的状态数量是有限的,转移图为描述特定系统可能包含的每个交互过程提供了一种简洁的方式。
首先,我们引入可达结果集的概念,这些结果集最终将构成转移图的顶点。假设采用交互过程的标准定义,初始结果集 (D_0) 必须为空,因此可能存在一些结果集不会出现在任何交互过程中。通过仅考虑可达结果集,我们将这些不可达的集合排除在转移图之外。
可达结果集的定义 :设 (A = (S, A)) 是一个可逆反应系统,其中 (S = Σ_p ∪ Σ_c)((Σ_p) 和 (Σ_c) 不一定不相交)。如果存在 (A) 中的一个非重启交互过程 (π = (γ, δ)),其中 (δ = D_0, D_1, … D_n),使得对于某个 (0 ≤ i ≤ n) 有 (D = D_i),则结果集 (D ⊆ Σ_p) 是可达的。(A) 中可达结果集的集合记为 (REACH_A)。
如果允许 (D_0) 非空(即反应系统可以从任意结果集开始计算),那么每个结果集都是可达的。通过要求 (D_0) 为空,我们将交互过程中的可能结果集限制为上述定义中的可达集。可达结果集的集合又由底层反应系统的反应决定。
转移图最初被定义为顶点代表背景集(通常表示为 (S))的子集,通过有向边连接,这些边等价于“可以从……得到”的关系。正式地,边集定义为 (E = {(W_1, W_2) | W_1 ⊆ S, res_