3、可逆反应系统与直接通信的反应系统研究

可逆反应系统与直接通信的反应系统研究

1. 可逆反应系统的转换图

可逆反应系统的转换图研究为理解其计算特性提供了重要视角。对于可逆的带后瞻反应系统 (A = (S, A)),其中 (S = Σ_p∪Σ_c)((Σ_p) 和 (Σ_c) 不一定不相交),其转换图 (TGA = (V_A, E_A)) 有着独特的性质。

我们可以从 (A) 构建一个有限转换系统 (F = (Q, Σ, δ))。具体步骤如下:
- 定义状态集 (Q) :利用 (A) 的转换图,将转换系统的状态集定义为 (Q = V_A)。
- 确定输入字母表 (Σ) :(F) 的输入字母表包含 (A) 的输入字母表的子集,即 (Σ = 2^{Σ_c})。
- 定义转换函数 (δ) :通过考虑 (TGA) 中的边,若在 (E_A) 中存在从 (q) 到 (r) 且标签为 (i) 的边,则 (δ(q, i) = r)。

由于 (F) 的上述定义,(A) 的转换图中的每个顶点(代表结果集)在 (F) 的状态图中都有对应的顶点,并且 (F) 状态图中的每条边都对应 (TGA) 中的一条边,所以 (F) 的状态图和 (A) 的转换图是同构的。

又因为 (A) 是可逆的,其转换图中没有顶点有多于一条具有相同标签的入边。由于 (F) 的状态图与 (TGA) 同构且边的标签相同,所以 (F) 也是可逆的转换系统。

基于此,我们有以下命题:可逆有限转换系统的状态转换图与带后瞻的可逆反应系统的转换图相对应,除了对应反应系统初始空结果集的特殊初始顶点。反之,任

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值