6、GFM语法、P系统与表格矩阵语法:理论探索与对比研究

GFM语法、P系统与表格矩阵语法:理论探索与对比研究

在形式语言理论和计算理论的研究中,多种语法模型和计算系统不断涌现,为解决不同的计算问题提供了丰富的工具。本文将围绕广义禁止矩阵语法(GFM Grammars)、并行上下文数组插入删除P系统(PCAIDPSs)和表格矩阵语法(TMGs)展开探讨,深入分析它们的特性、相互关系以及存在的开放性问题。

广义禁止矩阵语法(GFM Grammars)与膜计算视角

广义禁止矩阵语法作为受调控重写语法系统的一种变体,与膜计算建立了联系。然而,该领域仍存在一些待解决的问题:
1. 参数有界时的计算完备性 :已证明度为1且索引为1的GFM语法具有计算完备性,但当所有(其他)参数都受某个常数限制时,尚未得到类似结果。对于更大的度或索引值,情况也是如此。
2. 非终结符数量与计算完备性 :一般情况下,三个非终结符足以使GFM语法达到计算完备性,但此时大多数其他参数是无界的。相比之下,参数有界的GFM语法,最少需要六个非终结符,且索引(为5)相对较高。
3. 计算不完备性结果 :获取计算不完备性结果是一个有趣的研究方向。例如,是否存在某些递归可枚举语言,无法由具有两个非终结符的GFM语法生成?当所有参数都有界时,会出现更多此类开放性问题。
4. 对P系统计算完备性结果的影响 :本文及相关文献中的结果和思想是否有助于改进具有抑制剂的P系统的计算完备性结果,这一问题尚未明确,涉及到多重集重写的相关内容。
5. 膜过滤测试的改进 :从相关图示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值