三角阵列令牌Petri网、P系统与微阵列癌症数据特征选择
三角阵列令牌Petri网与三角瓷砖粘贴P系统对比
在研究中,常常需要对不同系统的生成能力进行比较,这里主要对比三角阵列令牌Petri网系统(TATPNPS)、三角阵列令牌Petri网(TATPN)和三角瓷砖粘贴P系统(TTPPS)的生成能力。
- 三角瓷砖粘贴P系统(TTPPS)定义 :TTPPS被定义为一个五元组π = (Σ, μ, F1, F2, … Fm, R1, R2, … Rm, i0)。其中,Σ是有限的等腰三角瓷砖集合;μ是膜结构,膜以一一对应的方式标记,标签为1, 2, … m;F1, F2, … Fm是与膜的m个区域相关联的,由Σ中等腰三角瓷砖构成的有限图片集;R1, R2, … Rm是与μ的m个区域相关联的粘贴规则的有限集合,规则类型为((xi, yi), tar) (1 ≤ i ≤ n);i0是输出膜,为基本膜。在TTPPS中,对系统每个区域的每个图片模式都要应用粘贴规则,图片模式会根据规则的目标指示移动到其他区域或留在同一区域。只有当所有粘贴规则都被应用时,计算才成功;若无法应用粘贴规则,计算停止。最终停止的图片模式由粘贴规则组成,且停留在输出膜区域i0。所有通过TTPPS粘贴规则计算得到的图片模式集合记为TTPPL(π),所有系统π生成的语言TTPPL(π)集合记为TTPPLm。
- 示例 :如三角瓷砖粘贴P系统π1 = (Σ, [1[2]2[3]3]1, F1, F2, F3, R1, R2, R3, 1),其中Σ = {A, A1, B, B1},F1 = φ,F2 = A1,F3 = φ,R1 = {(A,