部分数组令牌Petri网、P系统与特定状态序列研究
在计算科学领域,反应系统和P系统是两个重要的研究方向。反应系统用于模拟生化反应中的相互作用,而P系统则是受生物启发的膜计算模型。本文将介绍部分数组令牌Petri网系统(PATPNS)和基于反应的转换P系统((R)TPS),并探讨它们在生成特定状态序列方面的应用。
1. 部分数组令牌Petri网系统(PATPNS)
PATPNS与多种数组语言进行了比较,包括局部部分数组语言(PAL - LOC)、可识别部分数组语言(PAL - REC)和基本并行拼图数组文法(BPPAG)。研究表明,PATPNS在投影操作下是封闭的。
定理6 :PAL − REC ⊊ PATPNS。
证明思路:由于每个可识别部分数组语言都是局部部分数组语言的投影,根据定理4和5可知PAL − REC ⊆ PATPNS。通过给出一个不在PAL - REC但在PATPNS中的部分数组语言的例子,可以证明真包含关系。
2. 反应系统与P系统的基本概念
- 反应系统 :由Ehrenfeucht和Rozenberg引入,用于形式化活细胞中生化反应的相互作用。一个反应系统基于一个有限基集S,反应是一个三元组ρ = (R, I, P),其中R是反应物集合,I是抑制剂集合,P是产物集合,且R ∩ I = ∅。给定一个反应和一个子集T,如果R ⊆ T且I ∩ T = ∅,则T相对于该反应是启用的,结果为resρ(T) = P;否则resρ(T) = ∅。
- P系统 :由Gh. Pˇau