中文多智能体金融交易决策框架-TradingAgents-CN

TradingAgents-CN

简介功能技术原理应用场景

中文多智能体金融交易决策框架

基于多智能体大模型的智能金融决策支持系统

了解更多

什么是TradingAgents-CN

TradingAgents-CN是基于多智能体大模型的中文金融交易决策框架,在TauricResearch/TradingAgents的基础上进行了开发,为中文用户提供了完整的文档体系和本地化支持。

框架模拟真实交易公司的专业分工和协作决策流程,通过多个专业化AI智能体协作评估市场条件,包括分析师团队、研究员团队、交易员智能体、风险管理和管理层等多智能体协作架构。

支持多种大语言模型,如阿里百炼、Google AI、OpenAI和Anthropic等,可通过Web界面直观操作。TradingAgents-CN支持A股、港股等中国金融市场,整合了Tushare、AkShare等中文金融数据,为中文用户提供了便捷、智能的金融交易决策支持。

金融科技智能体协作系统

主要功能

多智能体协作架构

  • 分析师团队:包括基本面分析师、技术分析师、新闻分析师和社交媒体分析师
  • 研究员团队:由看涨研究员和看跌研究员组成,进行结构化辩论
  • 交易员智能体:综合所有信息,做出最终的交易决策
  • 风险管理:对交易进行多层次的风险评估和管理
  • 管理层:协调各团队工作,确保决策的质量和效率

多LLM模型支持

国产LLM集成

阿里百炼(qwen-turbo, qwen-plus-latest, qwen-max)和 Google AI(gemini-2.0-flash, gemini-1.5-pro, gemini-1.5-flash)

国际LLM支持

OpenAI(GPT-4o, GPT-4o-mini, GPT-3.5-turbo)和 Anthropic(Claude-3-Opus, Claude-3-Sonnet, Claude-3-Haiku)

直观操作

  • 基于 Streamlit 的现代化 Web 界面
  • 实时进度显示和分析过程可视化
  • 支持 5 级研究深度选择
  • 结构化显示投资建议、目标价位等
  • 完全中文化的用户界面

全面数据集成

A 股数据支持

通过通达信 API 提供 A 股实时行情和历史数据

美股数据支持

支持 FinnHub、Yahoo Finance 等数据源的实时行情

新闻数据集成

整合 Google News、财经新闻等,提供实时新闻数据

社交数据支持

支持 Reddit、Twitter 等社交媒体情绪分析

数据库支持

支持 MongoDB 数据持久化和 Redis 高速缓存

并行处理

多智能体并行分析,提高分析效率

技术原理

角色专业化与分工

为 LLM 智能体分配清晰、明确的角色和具体目标,将复杂的交易任务分解为更小、可管理的子任务,使每个智能体专注于其擅长的领域。

多智能体协作机制

采用多智能体系统架构,模拟现实世界交易公司的组织结构和协作流程。各智能体之间通过信息共享、辩论和反馈,实现对市场信息的综合分析和决策的优化。

模型选择与应用

根据不同任务的需求,选择合适的 LLM 模型进行处理。例如,使用快速思考模型进行数据检索和信息总结,使用深度思考模型进行复杂推理和决策支持。

LLM 与自然语言处理

基于 LLM 强大的自然语言处理能力,对文本数据进行深入理解和分析,提取关键信息和知识。智能体之间可以进行自然语言对话和辩论,向用户解释决策过程。

智能体协作流程图

基本面分析

技术分析

新闻分析

社交媒体分析

市场数据源

数据采集智能体

数据清洗智能体

特征工程智能体

分析师团队

研究员团队

交易员智能体

风险管理智能体

管理层

最终决策

数据管道设计

通过高效的数据管道设计,实现数据的获取、清洗、特征工程等流程。例如,原始数据从 FinnHub API 获取后,经过清洗和特征工程处理,最终汇入智能体知识共享池。

应用场景

个股分析

对个股的基本面、情绪、新闻和技术指标等信息进行深入分析,制定买入、卖出或持有的交易策略。

投资组合风险评估

对投资组合或单个资产进行全面的风险评估,识别潜在风险因素,制定相应的风险控制措施。

市场风险预警

实时监测市场风险,及时发出预警信号,帮助投资者规避或降低投资损失。

市场趋势分析

为金融机构和研究人员提供市场研究工具,深入分析市场趋势、行业动态和宏观经济因素。

投资策略研究

通过多智能体的辩论和协作,探索和研究新的投资策略,为投资决策提供理论支持。

量化交易支持

为量化交易策略提供智能分析和优化建议,提高策略的稳定性和收益率。

TradingAgents-CN

中文多智能体金融交易决策框架

GitHub 仓库

项目地址: https://github.com/hsliuping/TradingAgents-CN

国内下载

TradingAgents-CN-main.zip (夸克网盘)

部署 TradingAgents 涉及多个步骤,包括环境准备、角色定义、策略实现以及与交易平台的集成。以下是一个详细的指南,帮助完成 TradingAgents 的部署过程。 ### 环境准备 在开始之前,确保系统满足以下条件: - 安装 Python 3.8 或更高版本。 - 配置虚拟环境以管理项目依赖项。 - 安装必要的库,如 `pandas`、`numpy` 和交易 API 所需的 SDK(例如 Binance、Alpaca 等)。 ```bash # 创建并激活虚拟环境 python -m venv trading_env source trading_env/bin/activate # Linux/macOS trading_env\Scripts\activate # Windows # 安装常用库 pip install pandas numpy ``` ### 角色定义 根据引用内容,TradingAgents 基于七种不同的角色进行任务拆分 [^1]。这些角色包括: - **基本面分析师**:负责分析公司的财务报表和行业数据。 - **情绪分析师**:通过社交媒体或新闻评估市场情绪。 - **新闻分析师**:解析实时新闻对市场的影响。 - **技术分析师**:基于历史价格和交易量进行技术指标分析。 - **研究员**:汇总各类信息,为交易员提供决策支持。 - **交易员**:执行买卖操作。 - **风险经理**:监控和控制整体风险。 每个角色可以作为一个独立的模块或智能体,在代码中分别实现。 ### 策略实现 定义每个角色的行为逻辑,并将其封装为函数或类。例如,技术分析师可以根据移动平均线生成交易信号: ```python class TechnicalAnalyst: def generate_signal(self, data): short_window = 50 long_window = 200 data['short_mavg'] = data['price'].rolling(window=short_window, min_periods=1).mean() data['long_mavg'] = data['price'].rolling(window=long_window, min_periods=1).mean() if data['short_mavg'].iloc[-1] > data['long_mavg'].iloc[-1]: return 'BUY' else: return 'SELL' ``` ### 与交易平台集成 要实现自动化交易,需要将 TradingAgent 连接到实际的交易平台。可以通过 REST API 或 WebSocket 接口发送订单 [^2]。以下是一个简单的示例,展示如何使用 Alpaca 平台下单: ```python from alpaca.trading.client import TradingClient from alpaca.trading.requests import MarketOrderRequest from alpaca.trading.enums import OrderSide, TimeInForce # 初始化交易客户端 trading_client = TradingClient('YOUR_API_KEY', 'YOUR_SECRET_KEY') # 创建市场订单请求 market_order_data = MarketOrderRequest( symbol="AAPL", qty=1, side=OrderSide.BUY, time_in_force=TimeInForce.DAY ) # 提交订单 order = trading_client.submit_order(market_order_data) print(f"Submitted order: {order}") ``` ### 测试与优化 在正式部署前,建议使用历史数据进行回测,验证策略的有效性。可以使用 `backtrader` 或 `zipline` 等工具进行模拟交易。 ```python import backtrader as bt class TestStrategy(bt.Strategy): def next(self): if not self.position: self.buy(size=1) cerebro = bt.Cerebro() cerebro.addstrategy(TestStrategy) data = bt.feeds.PandasData(dataname=data) cerebro.adddata(data) cerebro.run() ``` ### 部署到生产环境 一旦测试完成并确认无误,可以将 TradingAgent 部署到服务器上运行。推荐使用云服务(如 AWS、Azure 或 Google Cloud),并设置定时任务或使用消息队列(如 RabbitMQ 或 Kafka)来处理实时数据流。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值