langchain 基于ES的数据向量化存储和检索

中文向量化模型候选:

向量模型的各任务效果对比:

从零开始了解语义搜索中的嵌入模型-腾讯云开发者社区-腾讯云

 GitHub - shibing624/text2vec: text2vec, text to vector. 文本向量表征工具,把文本转化为向量矩阵,实现了Word2Vec、RankBM25、Sentence-BERT、CoSENT等文本表征、文本相似度计算模型,开箱即用。

1、sentence-transformers/all-MiniLM-L6-v2 处理的token数量,向量维度为384维,支持多种语言。语义表达较差

2、Text-embedding-ada-002 处理token数量<=6000,向量维度1536

2、BAAI/bge-m3

3、多语言模型:BAAI/bge-m3 支持的输入长度<=8192

向量索引构建: 向量近似查询的比较HNSW和OPQ:图像检索:OPQ索引与HNSW索引

 from langchain_community.embeddings im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会发paper的学渣

您的鼓励和将是我前进的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值