《动手学深度学习》第二版 学习记录

本文记录了一位初学者在学习《动手学深度学习》过程中遇到的安装、环境配置、数据预处理和基础模型实现的问题,包括anaconda环境创建、PyCharm配置、以及线性回归和softmax回归的实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原书链接:《动手学深度学习》 — 动手学深度学习 2.0.0 documentation (d2l.ai)​​​​​​

        本人初次接触python,主要用于记录自己在学习本书时遇到的问题。可能解决办法还有很多种,也希望各位多多指教!也肯定会有许多地方不专业,也希望多多海涵。

安装

anaconda3安装教程于基本使用指令:Anaconda详细安装及使用教程(带图文) - 知乎 (zhihu.com)

        初次接触时,在安装anaconda3时遇见了创建环境失败的问题。尝试过使用cd命令在指定目录下创建环境,但是依然无法创建环境。后怀疑是因为使用的清华源下载的anaconda3导致无法使用书中代码创建环境。尝试换回默认源后,环境顺利创建。

        与JetBrains PyCharm 连接时,PyCharm无法在加载解释器中找到anaconda。后来查看网上帖子得知,这种情况下一般可以在这下载好的anaconda的目录中这个路径找到Python解释器,并添加上。F:\ProgramData\anaconda3\Scripts

        之后按照书中提示输入对应代码就可以下载d2l包了

2.预备知识

2.2.数据预处理

        在这一节中练习部分需要删除缺失值最多的列。作为初接触python的小白,当然不会。但在下面的论坛中发现了分享的答案代码。

import os
import pandas

def drop_col(m):
    num = m.isna().sum()  # 获得缺失值统计信息
    print(num)
    num_dict = num.to_dict()  # 转为字典
    print(num_dict)
    max_key = max(num_dict, key=num_dict.get)  # 取字典中最大值的键
    # print(max_key)
    del m[max_key]  # 删除缺失值最多的列
    return m


os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')

with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值