算法的衡量:时间复杂度和空间复杂度

本文详细介绍了算法的时间复杂度和空间复杂度。时间复杂度关注算法执行时间的增长趋势,例如双层循环的例子中,时间复杂度为O(n²)。空间复杂度则关注算法执行过程中所需内存空间。通过示例展示了如何计算和表示时间复杂度和空间复杂度,强调这两个指标在评估算法效率时的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间复杂度

时间复杂性:是指算法中各语句执行时间的总和。

(我不会在这里面打出一个数值的次方还有其他的数学符号,在此我就通俗的表示)

通过一个例子来看吧
示例:

for(int i=1;i<=n;++i){		//①
	for(int j=1;j<=n;++j){		//②
		x=x+1;			//③
		}
}

就拿这个简单的双层for循环来看。

时间复杂度并没办法精确的得到,只能了解它的大概趋势。在此,假设每一行代码的执行所需时间都

是相同的,那么在整个程序中,执行了多少行代码,就花费了多少的时间。(可以通俗的这样子理解)

首先我们来计算语句中执行次数的总和是多少:

①行,一共执行了n+1次,其中前n次都是满足条件,执行了循环中的语句块的,第n+1次的时候,依旧执

行了一遍第①行的代码,执行完之后才发现不满足条件,才结束循环的。所以执行了n+1次。

②行,一共执行了n(n+1)次,先前说到,外层循环的n+1次中只有n次满足条件,执行了里面的语句

块,内层循环如外层循环一样,执行次数都是n+1次,但是外层循环一次,内层循环执行一遍,所以内层循

环执行了n(n+1)次;
③行,执行了n的2次方次,两个循环都只有n次满足条件,才可以进入循环体,执行循环体内的代码。这

一行代码就是循环体内的代码。所以是这个执行次数。

语句总执行次数:f(n)=2nn+2*n+1

前面说到,时间复杂度是一种趋势,并不是一个精确值,所以,我们只需要取这个式子中的最高次方的单项

式即可,也就是2nn;因为式子中的最高次对整个的函数趋势的影响最大,取f(n)=2nn。

时间复杂度的数量级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值