pytorch查看网络模型变量以及对应的尺寸

本文记录了一种查看神经网络模型参数的方法,通过遍历并打印模型的命名参数及其大小,以便于理解模型结构和更新的参数。示例展示了GNN(图神经网络)、MLP(多层感知器)等层的权重和偏置参数的详细尺寸,有助于学习和调试深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天看代码发现,自己对于网络中需要更新的参数并不是很熟悉,然后百度发现了这个方法,记录一下:

在自己定义的模型下面加入这一行就可以查看了:

for name, param in model.named_parameters():
	print(name, '      ', param.size())

运行结果如下所示:

gnn.k_weight        torch.Size([192, 64])
gnn.node.0.weight        torch.Size([64, 19])
gnn.node.0.bias        torch.Size([64])
gnn.node.1.weight        torch.Size([64])
gnn.node.1.bias        torch.Size([64])
gnn.conv_params.0.weight        torch.Size([64, 64])
gnn.conv_params.0.bias        torch.Size([64])
gnn.conv_params.1.weight        torch.Size([64, 64])
gnn.conv_params.1.bias        torch.Size([64])
gnn.conv_params.2.weight        torch.Size([64, 64])
gnn.conv_params.2.bias        torch.Size([64])
gnn.bn2.0.weight        torch.Size([64])
gnn.bn2.0.bias        torch.Size([64])
gnn.bn2.1.weight        torch.Size([64])
gnn.bn2.1.bias        torch.Size([64])
gnn.bn2.2.weight        torch.Size([64])
gnn.bn2.2.bias        torch.Size([64])
gnn.bn3.weight        torch.Size([64])
gnn.bn3.bias        torch.Size([64])
gnn.graph_attn.0.weight        torch.Size([64, 64])
gnn.graph_attn.0.bias        torch.Size([64])
gnn.graph_attn.2.weight        torch.Size([64])
gnn.graph_attn.2.bias        torch.Size([64])
gnn.graph_attn.3.weight        torch.Size([1, 64])
gnn.graph_attn.3.bias        torch.Size([1])
gnn.graph_attn.4.weight        torch.Size([1])
gnn.graph_attn.4.bias        torch.Size([1])
mlp.m.0.weight        torch.Size([128, 64])
mlp.m.0.bias        torch.Size([128])
mlp.m.2.weight        torch.Size([2, 128])
mlp.m.2.bias        torch.Size([2])

努力加油a啊

PyTorch是一个用于深度学习的开源框架,其中的RNN(循环神经网络)模块可以用于多输入变量回归任务。多输入变量回归是一种通过多个输入变量来预测一个连续值的任务。 在PyTorch中,可以使用torch.nn.RNN类来构建RNN模型。要实现多输入变量回归,首先需要将输入的多个变量进行堆叠或拼接,形成一个输入序列来喂给模型。可以使用torch.cat()函数将输入变量按列进行拼接。 然后,可以定义RNN模型的参数,如隐藏层的大小、RNN层的类型(如GRU或LSTM)等。可以使用torch.nn.GRU或torch.nn.LSTM类来定义RNN层。 在前向传播过程中,可以通过调用RNN模型的forward()方法来计算输出。输出结果可以通过添加全连接层,将RNN的输出转换为所需的预测结果。需要注意的是,在RNN模型的前向传播过程中,需要将输入序列作为参数传递给模型。 在训练过程中,可以定义损失函数和优化器,通过最小化损失函数来更新模型的参数。常用的损失函数包括均方误差(MSE)和平均绝对误差(MAE)等。 最后,在训练和测试阶段,可以循环遍历数据集,并将输入序列和对应的目标值喂给模型,然后计算损失并进行反向传播。可以通过调用optimizer.step()方法来更新模型的参数。 综上所述,PyTorch中的RNN模块可以用于多输入变量回归任务。通过适当的数据处理、设置模型参数、定义损失函数和优化器,可以实现对多输入变量的连续值预测。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值