
用户案例
文章平均质量分 95
用户案例
StarRocks_labs
StarRocks 是 Linux 基金会旗下的开源项目,专注于打造高性能、可扩展的分析型数据库,助力企业构建高效统一的湖仓新范式。目前,StarRocks 已在全球多个行业广泛应用,帮助众多企业提升数据分析能力。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
金融科技新标杆:随行付大数据实时分析如何支撑百亿级秒级查询
随行付作为国内领先的支付基础设施平台,致力于携手合作伙伴与中小微企业,共建安全、稳定、高效运转的数字化支付生态,持续为不同行业与场景提供融合支付与经营的一体化数字化解决方案。原创 2025-07-03 23:45:17 · 648 阅读 · 0 评论 -
Unity Catalog 三大升级:Data+AI 时代的统一治理再进化
在刚刚落幕的 2025 Databricks Data + AI Summit 上,Databricks 重磅发布了多项 Lakehouse 相关功能更新。其中,面向数据湖治理场景的统一数据访问与管理方案 —— Unity Catalog,迎来了三大关键升级:全面支持 Apache Iceberg、面向业务用户的全新使用体验,以及数据治理与安全能力的持续增强。原创 2025-06-29 22:00:53 · 804 阅读 · 0 评论 -
StarRocks 存算分离在得物的降本增效实践
此次迁移达成了预期的成本和性能的收益目标,也拓展了集群未来的成长空间,也让业务团队和引擎团队都更加的了解 StarRocks,收获大量迁移经验,为将来迁移其他业务提供了有说服力的范例。在迁移过程中,我们与社区保持了紧密的联系,获得了社区大量帮助,也贡献了大量 patch 给社区,减少社区其他人需要踩的坑。在我们得物内部 StarRocks 的未来规划中,我们也将继续深度参与社区。StarRocks。原创 2024-12-27 16:01:01 · 2009 阅读 · 0 评论 -
Paimon x StarRocks 助力喜马拉雅构建实时湖仓
首先,简要介绍一下喜马拉雅的业务。我们的直播业务主要分为音频直播、视频直播以及多人娱乐厅三大类。音频直播:由专业主播为用户提供有声书、知识讲座等内容。视频直播:与市面上多数视频直播类似,包括主播表演和游戏直播等内容。多人娱乐厅:为用户提供一个互动交流的平台,他们可以与主持人共同参与讨论或活动。原创 2024-10-31 20:27:48 · 1097 阅读 · 0 评论 -
千万级数据秒级响应!碧桂园服务技术引擎重构智慧社区新标杆
碧服这次的存算分离实践不仅仅是一项技术升级,更是一场数字化转型的战略跃迁。依托海量大数据,碧服结合AI和大模型,打造了“一看”和“一问”的智能场景。通过“看现在”,系统能实时捕捉业务状态,为企业决策提供精准数据支持,从而助力精益运营、提升效率和降低成本;而“知未来”则赋予企业商业洞察力,既能精准挖掘市场机会和业户需求,又能提前预测设备故障,自动发起维保工单,有效规避风险,从而大幅提升用户满意度。迁移升级只是起点,为了进一步提升系统性能,碧服技术团队将持续总结经验,并积极推进以下优化措施。原创 2025-04-11 15:40:09 · 831 阅读 · 0 评论 -
StarRocks 助力首汽约车精细化运营
首汽约车成立于 2015 年,主营网约车业务,曾为冬奥会、冬残奥会等国家级重点会议提供出行服务。公司最初仅在北京运营,随后逐步扩展至全国。目前,我们的业务已覆盖全国 200 多个城市。首汽约车专注于特色化业务和差异化运营,服务用户涵盖 To C 和 To B 两大类。我们不仅面向普通消费者,也为商务人士提供高品质出行服务,满足不同用户的需求,包括服务敏感型和价格敏感型群体。总结来说,基于我们引入 StarRocks 以及在底层建设上的努力,我们在性能统一、场景拓展和效率提升方面取得了显著突破。原创 2025-04-08 23:02:39 · 1043 阅读 · 0 评论 -
40% 降本:多点 DMALL x StarRocks 的湖仓升级实战
在 StarRocks 的升级之路中,我们曾尝试压缩单个 CN Pod 的内存,扩大 CN Pod 的数量,以提升 Kubernetes Node 的装箱率。但测试后发现,这种优化方式并不适用于 StarRocks。即使是在 Kubernetes 部署模式下,StarRocks 也需要配置较大内存和 CPU 的 Pod 来保证服务质量。多点 DMALL 专注于 To B 业务,在“降本增效”的大背景下,客户对于成本和价值的敏感度更高。原创 2025-01-03 14:40:21 · 1219 阅读 · 0 评论 -
StarRocks + Paimon 在阿里集团 Lakehouse 的探索与实践
阿里集团在推进湖仓一体化建设过程中,依托 StarRocks 强大的 OLAP 查询能力与 Paimon 的高效数据入湖特性,实现了流批一体、存储成本大幅下降、查询性能数倍提升的显著成效:A+ 业务借助 Paimon 的准实时入湖,显著降低了存储成本,并引入 StarRocks 提升查询性能。升级后,数据时效提前60分钟,开发效率提升50%;JSON列化存储减少50%,查询性能提升最高达10倍;OLAP分析中,非JOIN查询快1倍,JOIN查询快5倍。饿了么升级为准实时Lakehouse架构后,在时原创 2025-03-14 09:16:59 · 1251 阅读 · 0 评论 -
从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型
在使用 StarRocks 的过程中,我们从实践中总结出了关于性能、稳定性和易用性的关键经验。原创 2025-01-20 20:16:40 · 2086 阅读 · 0 评论 -
StarRocks 存算分离在京东物流的落地实践
康琪:京东物流高级技术专家、StarRocks & Apache Flink Contributor导读:本文整理自京东物流高级技术专家在 StarRocks 年度峰会上的分享,UData 平台从存算一体到存算分离架构演进后,查询性能得到提升。Cache hit 时,P95 和 P99 查询延迟小于 10 秒,与存算一体架构相当;Cache miss时,查询响应不超过 1 分钟,远优于 Hive。在 OSS 性能和降本方面,存储成本减少了 90%,主要得益于从本地 SSD 转向 OSS 对象存储。原创 2025-03-29 19:57:26 · 1220 阅读 · 0 评论 -
腾讯大数据基于 StarRocks 的向量检索探索
什么是向量检索呢?简单来说,向量检索是通过给定一个查询向量,在特征数据库中找到与之距离最近的 k 个向量。举个例子,如果我们把今天会场的所有人作为特征向量,那么向量检索的任务就是找到与我最相似的 10 个人。用通俗的语言来说,它其实就是一个 Top N 查询。虽然本质上,向量检索就是一个 Top N 查询,但由于深度学习中几乎所有内容都用向量表示,所以我们将其称为“向量检索”。在单机环境下,我们在 30 万到 100 万数据规模和 50 维向量的情况下,可以实现十几毫秒的延迟。原创 2025-02-12 14:27:32 · 1433 阅读 · 0 评论 -
vivo 湖仓架构的性能提升之旅
在StarRocks年度峰会上的分享,聚焦vivo大数据多维分析面临的挑战、StarRocks 落地方案及应用收益在即席分析场景,StarRocks使用占比达70%、查询速度提升3倍,P50耗时从63.77 缩短至22.30秒,查询成功率接近98%在敏捷BI领域,StarRocks已完成25%切换,月均查询成功数超25万,P90查询时长缩短至5秒,相比Presto提升75%在研发工具平台方面,StarRocks支持准实时数据见性缩短至3分钟,查询加速使 P95延迟降至400毫秒,开发效率提升30%原创 2025-03-21 22:55:23 · 1047 阅读 · 0 评论 -
小红书湖仓架构的跃迁之路
作者:李鹏霖(丁典),小红书-研发工程师,StarRocks Contributor & Apache Impala Committer本文整理自小红书工程师在 StarRocks 年度峰会上的分享,介绍了小红书自助分析平台中,StarRocks 与 Iceberg 结合后,如何实现极速湖仓分析架构。与原有架构相比,湖上分析架构的同时,采用 Iceberg 存储格式后,尽管数据量和行数保持不变,但实际存储空间相较原有 ClickHouse 存算分离版本减少了一半。原创 2025-02-28 11:39:24 · 1499 阅读 · 0 评论 -
StarRocks 在爱奇艺大数据场景的实践
在爱奇艺的大数据分析场景中,通常需要实现两个核心目标:一是看过去,包括生成报表、分析剧集热度以及会员运营等;二是知未来,即预测用户增长和预估收入。虽然我们的最终目标是精准预测未来,但由于这一任务难度较大,我们更多地是通过精准的报表和历史数据分析,挖掘数据中的潜在价值,从而为未来决策提供支持。原创 2025-02-28 11:17:25 · 1108 阅读 · 0 评论 -
微信基于 StarRocks 的实时因果推断实践
作者:张婧婧 腾旭微信数据科学家熊吉祥 腾讯微信 OLAP 研发工程师、StarRocks Contributor本文整理自微信工程师在 StarRocks 年度峰会上的分享,介绍了因果推断在业务中的应用,详细阐述了基于 StarRocks 构建因果推断分析工具的技术方案,通过高效算子的支持,大幅提升了计算效率。例如,t 检验在 6亿行数据上的执行时间仅需 1 秒。StarRocks 还实现了实时数据整合,支持多种数据源(如 Iceberg 和 Hive)的无缝访问,进一步增强了平台的灵活性与应原创 2025-03-13 08:55:55 · 881 阅读 · 0 评论