cs231n学习笔记-lecture3(Loss Functions and Optimization)

这篇博客是cs231n课程的学习笔记,主要探讨了损失函数(如SVM Loss、Softmax Loss)及其正则化(L1和L2)的作用,并介绍了优化过程中的梯度下降策略。SVM Loss通过Hinge loss确保模型预测的正确类别得分超过其他类别。正则化避免过拟合,L1和L2正则化各有特点,L1导致参数稀疏,L2使参数更均衡。最后,博主介绍了通过导数求解最优解的优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近开始学习cs231n的课程,想从基础上再梳理一下视觉相关的知识点,课程中有些概念的解释还是非常巧妙的,将自己有些领悟的地方记录下来,方面以后回顾。

Loss Functions

SVM Loss

对于一个线性模型f(x,W)=Wx+b,计算出来的值就是某张图片对于每个类别的分数。

如上图的计算一样,假设我们现在有了一组W,如何判断这个W的表现如何呢

因此引入了loss函数,用这个loss函数计算出来的值来评估这组W计算出来的结果与我们期待的结果之间的差距。我们期待的情况当然是这张图片真实label位置计算出来的score要大于其他位置的score,如果符合这个要求,loss就为0,否则就会有loss值产生以表示跟我们期待的情况有差距。

给定样本(x_i,y_i)i从1到N,N是总共样本个数,我们会对每一个样本求loss,然后汇总得到总共的loss

按照上面提到的思路,我们希望图片真实label的score要高于其他位置score,这里为了提高robustness,我们增加一个margin值,让真实label是score大于其他位置score+margin,假定margin为1,那么loss可以如下表示,叫做SVM loss

{s_{y}}_i表示正确label的得分,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值