引言
在现代信息检索中,仅依赖向量相似度搜索已不再能够满足所有需求。许多向量存储实现(如Astra DB、ElasticSearch、Neo4J等)支持混合搜索,即结合向量相似度搜索与其他技术(如全文检索、BM25等)的搜索方式。本文将深入介绍如何在LangChain中实现混合搜索。
主要内容
1. 确保向量存储支持混合搜索
在开始之前,首先要确认所选择的向量存储支持混合搜索功能。由于在LangChain中还没有统一的混合搜索实现方式,因此需要根据相应的向量存储文档确认其支持的功能和用法。
2. 为链添加可配置参数
为了灵活地在运行时配置搜索参数,我们需要在链中引入可配置字段。可以参考相关的文档了解如何设置配置字段。
3. 使用可配置字段调用链
设置完配置字段后,可以在运行时通过这些字段灵活地调用链。
代码示例
以下是使用Astra DB的Cassandra/CQL接口实现混合搜索的代码示例。
# 安装cassio包
!pip install "cassio>=0.1.7"
# 获取连接密钥并初始化cassio
import cassio
cassio.init(
database_id="Your database ID",
token="Your application token",
keyspace="Your key space",
)
# 创建Cassandra VectorStore并添加文本
from cassio.table.cql import STANDARD_ANALYZER
from langchain_community.vectorstores import Cassandra
from langchain_openai import OpenAIEmbeddings
embeddings =