在LangChain中实现“混合搜索”:结合向量与全文检索的强大功能

引言

在现代信息检索中,仅依赖向量相似度搜索已不再能够满足所有需求。许多向量存储实现(如Astra DB、ElasticSearch、Neo4J等)支持混合搜索,即结合向量相似度搜索与其他技术(如全文检索、BM25等)的搜索方式。本文将深入介绍如何在LangChain中实现混合搜索。

主要内容

1. 确保向量存储支持混合搜索

在开始之前,首先要确认所选择的向量存储支持混合搜索功能。由于在LangChain中还没有统一的混合搜索实现方式,因此需要根据相应的向量存储文档确认其支持的功能和用法。

2. 为链添加可配置参数

为了灵活地在运行时配置搜索参数,我们需要在链中引入可配置字段。可以参考相关的文档了解如何设置配置字段。

3. 使用可配置字段调用链

设置完配置字段后,可以在运行时通过这些字段灵活地调用链。

代码示例

以下是使用Astra DB的Cassandra/CQL接口实现混合搜索的代码示例。

# 安装cassio包
!pip install "cassio>=0.1.7"

# 获取连接密钥并初始化cassio
import cassio

cassio.init(
    database_id="Your database ID",
    token="Your application token",
    keyspace="Your key space",
)

# 创建Cassandra VectorStore并添加文本
from cassio.table.cql import STANDARD_ANALYZER
from langchain_community.vectorstores import Cassandra
from langchain_openai import OpenAIEmbeddings

embeddings =
### LangChain 混合检索概述 混合检索旨在结合不同类型的搜索算法优势,从而提供更高质量的结果。在LangChain框架内,这种组合通常涉及传统基于关键词的搜索引擎(如Elasticsearch)现代向量相似度匹配机制之间的协作[^1]。 ### 向量存储的选择 为了有效实施混合搜索,在构建系统之初就需要挑选合适的向量数据库作为支撑平台。理想的候选者应当具备高效处理大规模数据集的能力,并且能够无缝集成到现有的基础设施当中。例如,Astra DB就是一个不错的选择,它允许开发者通过简单的`body_search`参数配置来启用强大混合查询功能[^2]。 ### 实现步骤详解 #### 步骤一:初始化环境并加载必要库 首先确保安装了最新版本的Python以及所需的第三方依赖项: ```bash pip install langchain elasticsearch astrapy ``` 接着导入必要的模块: ```python from langchain import LangChain, DenseRetriever import elasticsearch ``` #### 步骤二:连接至目标索引 建立Elasticsearch实例间的通信链路,并指定要操作的具体索引名称: ```python es_client = elasticsearch.Elasticsearch("http://localhost:9200") index_name = 'my_documents' ``` #### 步骤三:定义向量字段映射结构 针对待嵌入的内容创建相应的密集型表示形式——即所谓的"dense vector"[^3]: ```json { "mappings": { "properties": { "content_embedding": {"type": "dense_vector", "dims": 768} } } } ``` 此JSON片段描述了一个具有固定维度大小为768维的空间坐标系,用于容纳由预训练模型生成的文章摘要或其他文本特征编码结果。 #### 步骤四:编写自定义评分函数 当面对来自多个渠道的数据流时,合理分配权重变得尤为重要。这里介绍了一种称为“递减排名融合”的策略(RRF),其核心思想在于综合考虑各个子系统的相对重要程度,最终得出统一排序列表[^4]。 ```python def rrf_score(documents): scores = [] for doc in documents: score_sum = sum([1 / (rank + k) for rank in doc['ranks']]) scores.append((doc['_id'], score_sum)) return sorted(scores, key=lambda x: x[1], reverse=True) # 参数k可以根据实际情况调整,默认取值为60 k = 60 ``` 上述代码实现了对输入文档集合按照RRF原则打分的过程,其中每个元素都包含了原始ID及其对应的累积得分;最后一步则是依据总分数高低完成降序排列。 ### 结论 综上所述,借助于LangChain所提供的灵活接口设计思路,配合恰当的技术选型方案,完全可以打造出一套既满足业务需求又具有良好扩展性的混合检索引擎架构体系。值得注意的是,实际项目开发过程中还需充分考虑到诸如性能调优、异常捕获等诸多细节方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值