将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;
一个思路是,对于F(7,3)=不含1的方案数①+含1的方案数②。
F(i,j)=a(i,j)+b(i,j)
子问题①a(i,j)=F(i-j,j),如其中一个方案2 2 3不含1,则把组成它的j个数都减去1,变成1 1 2的方案,即用3个数组成4.
子问题②b(i,j)=F(i-1,j-1),即用j-1个数组成i-1,则第j个数必为1
对于像 1 1 5,1 5 1,5 1 1这样的方案,从F(7,3)变成了F(5,1),即转化成了用1个数组成5,所以像这样就不会重复。
综上 F(i,j)=F(i-j,i)+F(i-1,j-1).
初始化至少要有F(0,0)=1,其他0。因为对于i==j,即F(x,x)=F(0,x)+F(x-1,x-1). F(0,x)必为0而F(x,x)必为1.
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;
问有多少种不同的分法。
n,k (6<n<=200,2<=k<=6)
输出格式:
一个整数,即不同的分法。
- 剪枝1:如果当已划分的数的和已经超过N 则不继续划分
- 剪枝2:最后一位时不进行搜索 直接判断出答案 if(N-sum!=0 && N-sum>=num) ans++
- 剪枝3:忘了
- 注意 我每个搜索的数都等于或大于已经划分的数 所已经不会出现重复排列
- 注意回溯
- 代码虽然长但字数没多少 都是空行
- */
- #include <cstdio>
- #include <iostream>
- int N,K,ans;
- void DFS(int num,int sum,int flag)
- {
- if(flag==K)
- {
- if(N-sum!=0 && N-sum>=num)
- ans++;
- }
- else
- {
- for(int i=num;i<=N;i++)
- {
- if(i==0) continue ;
- if(sum>N) return;
- sum+=i;
- DFS(i,sum,flag+1);
- sum-=i;//回溯
- }
- }
- }
- int main()
- {
- scanf("%d%d",&N,&K);
- DFS(0,0,1);
- printf("%d",ans);
- return 0;
- }
一个思路是,对于F(7,3)=不含1的方案数①+含1的方案数②。
F(i,j)=a(i,j)+b(i,j)
子问题①a(i,j)=F(i-j,j),如其中一个方案2 2 3不含1,则把组成它的j个数都减去1,变成1 1 2的方案,即用3个数组成4.
子问题②b(i,j)=F(i-1,j-1),即用j-1个数组成i-1,则第j个数必为1
对于像 1 1 5,1 5 1,5 1 1这样的方案,从F(7,3)变成了F(5,1),即转化成了用1个数组成5,所以像这样就不会重复。
综上 F(i,j)=F(i-j,i)+F(i-1,j-1).
初始化至少要有F(0,0)=1,其他0。因为对于i==j,即F(x,x)=F(0,x)+F(x-1,x-1). F(0,x)必为0而F(x,x)必为1.
- #include<stdio.h>
- int F[201][7];
- int main(void)
- {
- int i,j,n,m;
- scanf("%d%d",&n,&m);
- // for(i=1;i<=n;i++)F[i][1]=F[i][i]=1;
- F[0][0]=1;//i==j时方案数为1
- for(i=1;i<=n;i++)
- for(j=1;j<=m&&j<=i;j++)
- F[i][j]=F[i-j][j]+F[i-1][j-1];
- printf("%d",F[n][m]);
- return 0;
- }