P1025 数的划分

将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;

问有多少种不同的分法。


n,k (6<n<=200,2<=k<=6)
输出格式:
一个整数,即不同的分法。


  1.  剪枝1:如果当已划分的数的和已经超过N 则不继续划分  
  2.  剪枝2:最后一位时不进行搜索 直接判断出答案  if(N-sum!=0 && N-sum>=num) ans++ 
  3.  剪枝3:忘了  
  4.  注意 我每个搜索的数都等于或大于已经划分的数 所已经不会出现重复排列 
  5.  注意回溯 
  6.  代码虽然长但字数没多少 都是空行  
  7. */  
  8.   
  9. #include <cstdio>  
  10. #include <iostream>  
  11. int N,K,ans;  
  12. void DFS(int num,int sum,int flag)  
  13. {     
  14.     if(flag==K)  
  15.         {  
  16.         if(N-sum!=0 && N-sum>=num)         
  17.             ans++;  
  18.         }  
  19.     else  
  20.     {  
  21.         for(int i=num;i<=N;i++)  
  22.         {     
  23.             if(i==0) continue ;  
  24.             if(sum>N) return;   
  25.             sum+=i;  
  26.             DFS(i,sum,flag+1);  
  27.             sum-=i;//回溯   
  28.         }  
  29.     }  
  30. }  
  31. int main()  
  32. {  
  33.     scanf("%d%d",&N,&K);  
  34.     DFS(0,0,1);  
  35.     printf("%d",ans);  
  36.     return 0;  
  37. }   
设F(i,j)为用j个数组成i,答案为F(7,3)的话。
一个思路是,对于F(7,3)=不含1的方案数①+含1的方案数②。
F(i,j)=a(i,j)+b(i,j)
子问题①a(i,j)=F(i-j,j),如其中一个方案2 2 3不含1,则把组成它的j个数都减去1,变成1 1 2的方案,即用3个数组成4.
子问题②b(i,j)=F(i-1,j-1),即用j-1个数组成i-1,则第j个数必为1
对于像 1 1 5,1 5 1,5 1 1这样的方案,从F(7,3)变成了F(5,1),即转化成了用1个数组成5,所以像这样就不会重复。
综上 F(i,j)=F(i-j,i)+F(i-1,j-1).
初始化至少要有F(0,0)=1,其他0。因为对于i==j,即F(x,x)=F(0,x)+F(x-1,x-1). F(0,x)必为0而F(x,x)必为1.
  1. #include<stdio.h>    
  2. int F[201][7];  
  3. int main(void)  
  4. {  
  5.     int i,j,n,m;  
  6.     scanf("%d%d",&n,&m);  
  7. //  for(i=1;i<=n;i++)F[i][1]=F[i][i]=1;  
  8.     F[0][0]=1;//i==j时方案数为1   
  9.     for(i=1;i<=n;i++)  
  10.         for(j=1;j<=m&&j<=i;j++)  
  11.             F[i][j]=F[i-j][j]+F[i-1][j-1];  
  12.     printf("%d",F[n][m]);  
  13.     return 0;  
  14. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值