FRM模型三:GARCH预测波动率

本文介绍了FRM系列的第三个模型——GARCH,用于预测金融数据的波动率,强调了GARCH模型在处理波动率聚集效应上的优势。通过四个步骤详细展示了如何导入数据、计算波动率、检验序列适配性和建立GARCH(1,1)模型的过程。" 99826076,7650585,Scrapy框架实践:爬取图书信息,"['scrapy', '爬虫开发', '数据抓取', 'Python爬虫', 'web scraping']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FRM系列的第三个模型:GARCH

FRM系列的第三个模式是来自1级Book4中市场风险一章估计波动率的模型。由于金融数据波动率不是恒定不变的,会出现聚集效应。因此在预测波动率时,需要用更加复杂的统计模型进行建模。GARCH模型的优势在于能够很好描述这种波动率集聚现象。

GARCH模型介绍

以GARCH(1,1)为例,表达式如下:
σn2=γVL+σrn−12+βσn−12 \sigma_n^{2} =\gamma V_L+\sigma r_{n-1}^{2}+\beta \sigma_{n-1}^{2}σn2=γVL+σr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值