
中间件
文章平均质量分 52
Strong_shady
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
redis--io多路复用---select/poll/epoll---多路复用模型保留兜底原因
1.select() ★select()优缺点 小结论 select方式,既做到了一个线程处理多个客户端连接,又减少了系统开销(多个文件描述符只有一次系统调用,+N次就绪状态的文件描述符的read系统调用) 2.poll() 优缺点 ★★★3.epoll()–redis采用 3.1epoll_create()–建立 创建一个epoll()句柄(相当于new一个集合) 3.2 epoll_ctl()–监听 向内核添加、修改或删除要监控的文件描述符 3.2epoll_wait()–调用.原创 2021-10-27 18:41:45 · 226 阅读 · 0 评论 -
redis分布式锁问题分析--解决Demo--
/** * * @author IceYan * @since 2021-10-01 */ @Service public class BaseBrandServiceImpl extends ServiceImpl<BaseBrandMapper, BaseBrand> implements BaseBrandService { @Autowired private RedisTemplate redisTemplate; @Autowired priv原创 2021-10-05 17:27:48 · 346 阅读 · 0 评论 -
redis--bloomFilter
需求:50亿个电话号码,查找10万个,判断10w个电话号码是否存在? 用bitmap/hyperloglog的话,亿级数据也是非常吃内存哟。 是个啥: 由一个初始值都为0的bit数组和多个哈希函数构成,用于快速判断某个数据是否存在。(多个hash函数,减少hash冲突概率) 本质:用于快速判断数据是否存在于一个大的集合中。类似set,但是统计结果不太准确。 特点: 1.插入、查询高效,占空间少,返回结果不确定。 2.一个元素,存在时,bloom来判断它不一定就存在;但是不存在的,bloom来判断,结果一定原创 2021-10-22 22:45:15 · 369 阅读 · 0 评论