Hive和Spark SQL优化

本文介绍了Hive和Spark SQL的优化方法,包括优化步骤、策略与具体实践。通过对任务耗时的分析,确定优化方向,如剪枝、提高并行度和Join优化。在Hive中,优化包括合理利用分区、分桶和谓词下推;在Spark中,可通过调整executor数量和利用broadcast hash join提高性能。此外,解决小文件问题和数据倾斜也是关键,可以通过配置参数和特定操作来改善。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化步骤

  • 问题定位,通过日志和代码分析,定位任务耗时长的原因

    • hive任务,对于hive任务,可以通过日志查看哪个application、以及是哪个阶段耗时较长,另外,可以通过stage编号,结合explain查看执行计划,可以得知耗时较长的application对应的是sql中的哪个操作,便于具体分析原因。如果是map阶段较长,很可能是并发不够,如果是reduce较长,且长时间留停在99%,则很可能发生了数据倾斜,如果是map和reduce的耗时都不长,但整个application的耗时却很长,则很有可能是大量小文件的读写造成的I/O耗时较长,当然,也不排除集群本身的一些因素,比如网络等问题。

    • spark任务,对于spark任务,可以在spark UI页面上查看作业的dag图,每个stage耗费的时长,每个stage启有的executor数量,每个任务耗费的时长,最长任务耗时,最短任务耗时,以及任务的中位数耗时等等,通过这些信息,我们可以判断出当前作业耗时较长的原因。

  • 对症下药
    大多数情况,运行慢的原因很可能是并行度不够,或者数据处理发生了倾斜,找到任务耗时长的根源之后,根据不同的原因,作出相应的调优策略,例如,如果是并发不够,则适当提高并发,如果是数据发生倾斜,则考虑如何解决倾斜。

优化策略

  • 剪枝
  • 提高并行度
  • join优化
  • 避免生成太多小文件
  • 数据倾斜
  • 尽量减少shuffle

剪枝

  • 合理利用分区
    对于全量计算的表,最好考虑拆分,减少数据输入量

  • 合理利用分桶

    https://cwiki.apache.org/confluence/display/Hive/Langu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值