如何根据keras的fit后返回的history绘制loss acc曲线

本文介绍了一种使用Python和matplotlib库来绘制深度学习模型训练过程中的损失(loss)和准确率(acc)变化曲线的方法。通过调用model.summary()查看模型结构,并利用训练历史数据hist.history,分别绘制了训练集和验证集上的损失与准确率曲线,帮助理解和优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

model.summary()
#绘制acc-loss曲线
import matplotlib.pyplot as plt
plt.plot(hist.history['loss'],color='r')
plt.plot(hist.history['val_loss'],color='g')
plt.plot(hist.history['acc'],color='b')
plt.plot(hist.history['val_acc'],color='k')
plt.title('model loss and acc')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'test_loss','train_acc', 'test_acc'], loc='upper left')
plt.show()

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值