
数学基础
火星种萝卜
c++ vc mfc java
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
关于齐次坐标系的理解 - 北冥有鱼其名为鲲 - 博客园
关于齐次坐标系的理解 - 北冥有鱼其名为鲲 - 博客园转载 2022-02-12 14:18:22 · 126 阅读 · 0 评论 -
机器人学—数学基础—齐次坐标和齐次变换 - 豆丁网
机器人学—数学基础—齐次坐标和齐次变换 - 豆丁网转载 2022-02-12 12:17:58 · 568 阅读 · 0 评论 -
数学中齐次性
数学中的齐次性是么意思_作业帮转载 2022-02-11 16:09:59 · 154 阅读 · 0 评论 -
什么情况下,积分和求导可以交换顺序?
什么情况下,积分和求导可以交换顺序? - 知乎转载 2022-01-27 23:17:37 · 7270 阅读 · 0 评论 -
绝对收敛和条件收敛
绝对收敛和条件收敛怎么判断转载 2022-01-26 16:28:37 · 1384 阅读 · 0 评论 -
特征值和特征向量的具体用途有哪些
特征值和特征向量的具体用途有哪些? - 知乎转载 2022-01-23 20:09:22 · 601 阅读 · 0 评论 -
虚数的定义及由来
虚数的定义及由来-101教育知识点频道转载 2022-01-21 20:43:50 · 734 阅读 · 0 评论 -
欧拉公式的简单证明
欧拉公式的简单证明 - 知乎转载 2022-01-21 20:02:17 · 313 阅读 · 0 评论 -
线性代数发明人
线性代数是谁发明的_百度知道转载 2021-10-07 00:25:40 · 872 阅读 · 0 评论 -
不明白点积的几何意义
不明白点积的几何意义在网上搜了很多资料,都说两个向量A和B的点积的几何意义是A到B的投影,我是想不明白,根据点积的定义A.B = |A||B|cos x, x 是A和B之间的夹角这里,我们看到|A|cos x的确是向量A投影在向量B上的长度,但是它还要乘上B的长度呀,这样点积的值不是单纯的投影,请问各位向量A在B上投影长度乘上B的长度,如果是物理上的力和位移,这个量不难理解,它就是功,但几何上这个量是甚麼?到底怎样理解点积的几何意义?先谢谢各位。回复楼下的答题者:我不同意你后面的说法,符号是人为转载 2021-10-04 22:17:36 · 669 阅读 · 0 评论 -
向量内积的几何意义
https://www.zhihu.com/question/48308610/answer/996133623不过的确,我们要这个东西有什么意义呢?为什么平白无故引入这个概念呢?数学家很多时候引入一个新概念,都是为了方便更其他计算,或解释物理现象。解释物理现象:力的做功,当力的向量和移动距离向量有夹角时,力的功就是力向量与距离向量的点积。方便复杂计算: 例如,向量的点积为零,意味着垂直,这在证明垂直问题上有很大作用。...转载 2021-10-04 16:41:10 · 1301 阅读 · 0 评论 -
二次型梯度
https://blog.csdn.net/benqbo/article/details/84068181转载 2021-04-27 10:21:06 · 543 阅读 · 0 评论 -
梯度的物理意义是什么
https://www.zhihu.com/question/29151564转载 2020-11-21 14:37:12 · 2383 阅读 · 0 评论 -
矩阵的本质
http://www.360doc.com/content/18/0731/10/11935121_774613558.shtml转载 2020-03-23 15:27:10 · 143 阅读 · 0 评论 -
深入理解特征值与特征向量
https://baijiahao.baidu.com/s?id=1628584413921520630&wfr=spider&for=pc转载 2020-03-23 11:59:20 · 278 阅读 · 0 评论 -
处处连续不可微例子
https://www.jianshu.com/p/3ab3c18f3513转载 2020-03-23 11:37:41 · 1690 阅读 · 0 评论 -
贝克莱悖论关于无穷小的悖论:趋近于0到底是不是0
https://www.zhihu.com/question/28387230转载 2020-03-23 11:27:35 · 2028 阅读 · 0 评论 -
矩阵列变换的意义
https://www.zhihu.com/question/47708154转载 2020-03-22 15:28:32 · 1616 阅读 · 0 评论 -
线性代数行变换与列变换
https://zhidao.baidu.com/question/1449894716117350020.html?fr=iks&word=%C1%D0%B1%E4%BB%BB&ie=gbk转载 2020-03-22 15:27:52 · 2630 阅读 · 0 评论 -
矩阵的列变换
https://www.zhihu.com/question/47708154转载 2020-03-22 12:56:13 · 4394 阅读 · 0 评论 -
【数学】拉格朗日对偶,从0到完全理解
https://blog.csdn.net/frostime/article/details/90291392转载 2020-03-18 10:43:14 · 154 阅读 · 0 评论 -
什么是正规方程组
https://zhidao.baidu.com/question/522331252809877525.html转载 2020-03-17 23:03:41 · 2214 阅读 · 0 评论 -
比如“古今数学思想”,BBC的“数学的故事”视频,一起看效果会更好
偶然看见了浙大蔡天新教授的公开课。老师以几位数学大师作为重点和切入点介绍了数学在不同时期,不同国家的发展,非常新颖有趣。当然没有什么是完美无缺的。如果能更突出重点。应该认真听,如果能结合其它材料,比如“古今数学思想”,BBC的“数学的故事”视频,一起看效果会更好。很同意几位网友说的要看第二遍,还有记笔记。了解数学大师的事迹,会帮助我们更好地理解大师的突破性贡献的想法是如果产生的。...原创 2017-05-01 15:37:25 · 1380 阅读 · 1 评论 -
16部趣味数学纪录片
百度首页C51VCMFC16部趣味数学纪录片,彻底爱上数学 | 资源搜狐新闻12-1007:39如何让孩子从小爱上数学、掌握数学思维?纪录片就是很好的工具——既有生动的讲解,帮孩子搞懂各种定理,也能从生活出发,带孩子换个方式看数学,激发学习热情。本文来源于微信公众号:少年商学院(微信ID:youthMBA)少年商学院是领先的国...转载 2017-12-10 11:34:35 · 15654 阅读 · 0 评论 -
从直觉到数学
从直觉到数学袋中有球若干,分黑白两色,随机抽取一个记录颜色后放回,抽取100次,其中70次为黑球,30次为白球,请问袋中黑白球比例最可能为多少答案 7:31 假设每次抽中黑球几率为p,则抽中白球概率为1-p2 抽100个球,其中70个黑球,30个白球几率为p^70*(1-p)^303 p^70*(1-p)^30值最大时一阶导数为0,即70*p^69*(1-p)^30-p^70*30*(...原创 2019-10-29 14:39:10 · 270 阅读 · 0 评论 -
纪念数学家、系统与控制学家关肇直院士《泛函分析》
开疆拓土 贻范古今 纪念数学家、系统与控制学家关肇直院士百年诞辰 关肇直中国科学院数学与系统科学研究院供图■本报见习记者 韩扬眉3月30日,春寒料峭,数学和系统控制领域的院士、学者近百人聚集在中国科学院数学与系统科学研究院会议室。参会者大多已白发苍苍,有的甚至坐着轮椅、拄着拐杖。他们从全国各地而来,只为纪念自己的恩师、前辈——中国控制理论的开拓者...转载 2019-11-12 12:14:26 · 1514 阅读 · 0 评论