衡量线性回归算法最好的指标:R Squared
一、摘要
本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared(R方)。R方用于比较模型预测结果与实际结果的拟合程度,其值范围在0到1之间,越接近1表示模型预测效果越好。R方的计算涉及预测误差
与总误差
的比较,其中分子为预测误差的平方和
,分母为总误差的平方和
。当R方等于1时,表示模型预测无误差;小于零则表明模型效果不佳,可能不适合线性回归。 此外,还介绍了如何通过编程实践计算R方值,并在不同的机器学习库中实现该指标的计算。最后,强调了R方作为衡量线性回归模型性能的关键指标的重要性。
二、回归算法评价指标与R Squared指标介绍
-
之前的博文中介绍了评价回归算法优劣的三个指标:MSE(均方误差)、RMSE(均方根误差)和MAE(平均绝对误差)。这些指标存在的问题:
无法直接比较不同问题的预测误差
。分类问题的评价指标简单明了,取值在0到1之间,而回归算法的指标没有这样的性质。 -
R Squared(R方) 是一个解决上述问题的新指标。
计算方法:1减去两个量的比值,分子是残差平方和,分母是总平方和。
- R方计算步骤:计算残差平方和与总平方和,代入公式计算R方值。
- 残差平方和:
预测结果
减去真实值
的平方和
。 - 总平方和:
真实值
与均值
差的平方和
。
R Squared的优势:
- R方将回归问题的衡量结果归约到0到1之间,便于比较不同模型的性能。
- R方越大越好,越接近1表示模型预测越准确。
- R方小于零表示模型预测效果不如基准模型。
- 可能意味着数据间不存在线性关系,需要考虑其他回归方法。
R Squared的统计意义:
- R方可以表示为1减去均方误差(MSE)与方差的比值。
- 均方误差:预测结果与真实值的平方差均值。
- 方差:真实值的方差。
- R方衡量模型与基准模型的差异,值越大表示模型预测越准确。