PAT--L2-006树的遍历------由遍历序列恢复二叉树

本文介绍了一种算法,通过给定的后序遍历和中序遍历序列,恢复一棵二叉树,并输出其层序遍历序列。文章详细解释了如何使用递归方法在顺序存储中重建二叉树,以及需要注意的空间问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来总结一下:
1)由两种序列恢复二叉树,既可以链式存储,也可以顺序存储,为方便输出,一般都是采用顺序存储,所以在恢复过程中,直接采用顺序存储。
2)记住最重要的一点,存储二叉树的数组要足够大,因为虽然结点不是特别的多,但是顺序存储特别浪费空间,否则会发生段错误。

题目描述:
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。

输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。

输出格式:
在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2

题目大意:
由后序和中序恢复二叉树,最后层次输出。
主要代码链接------>通过先序,中序,后序中的两种来还原二叉树

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;
int n,a[100001],p=0;
void inpost(int in[],int i,int j,int post[],int h,int k,int p)
{
    a[p]=post[k];
    int m=i;
    while(in[m]!=post[k]) m++;
    if(m==i) a[2*p]=-1;
    else inpost(in,i,m-1,post,h,m+h-1-i,2*p);
    if(m==j) a[2*p+1]=-1;
    else inpost(in,m+1,j,post,k-j+m,k-1,2*p+1);
}
int main()
{
    scanf("%d",&n);
    fill(a,a+100001,-1);
    int in[31],post[31],flag=0;
    for(int i=0;i<n;i++) scanf("%d",&post[i]);
    for(int i=0;i<n;i++) scanf("%d",&in[i]);
    inpost(in,0,n-1,post,0,n-1,1);
    for(int l=0;;l++){
        if(a[l]!=-1){
            flag++;
            flag==n?printf("%d",a[l]):printf("%d ",a[l]);
        }
        if(flag==n) break;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值