Kaldi AMI数据集脚本学习7---train_deltas.sh

本文详细介绍了在Kaldi中使用AMI数据集训练delta特征的过程,包括设置num-leaves和tot-gauss参数,建立决策树的各个步骤,如聚类、问题编译、根节点设置和决策树构建,最终将决策树信息存储在tree文件中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 命令行格式

在AMI数据集中num-leaves=5000(即5000个不同的states),tot-gauss=80000(平均每个不同states 高斯模型数目是16个).

"Usage: steps/tandem/train_deltas.sh <num-leaves> <tot-gauss> <data1-dir> <data2-dir> <lang-dir> <alignment-dir> <exp-dir>"

2. 训练步骤总览

1)Train a monophone system (or use previously built triphone system) to get time alignments for data.

2)Build a “decision tree” for each “monophone”.

3)For each seen triphone, accumulate sufficient statistics to train a single Gaussian per HMM state。得到的statistics存放在exp/tri1/treeacc文件。



3. Build “decision tree”

1) get questions

We cluster the phones to get questions.

A question is just a set of phones,Would normally be a

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值