软件缺陷预测中集成学习技术评估与代码嵌入方法研究
1. 集成学习技术评估实验设计
在软件缺陷预测的研究中,为了评估模型性能,采用了10 - Fold策略。具体操作是将数据进行10种不同的划分,每次划分都包含独立的训练集和测试集。然后在这10组训练 - 测试数据集上对给定模型进行评估,并将结果取平均值。评估模型性能时,主要关注F - measure,同时也计算了Accuracy、Precision和Recall。这些指标的计算基于混淆矩阵中的True Positive(正确标记为“有缺陷”的样本数量)、False Positive(错误标记为“无缺陷”的样本数量)、True Negative(正确标记为“无缺陷”的样本数量)和False Negative(错误标记为“有缺陷”的样本数量),计算公式如下:
- Accuracy :$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
- Precision :$Precision = \frac{TP}{TP + FP}$
- Recall :$Recall = \frac{TP}{TP + FN}$
- F - measure :$F - measure = 2 \times \frac{Precision \times Recall}{Precision + Recall}$
不同集成学习器、基础学习器组合以及不同预处理技术下的F - measure值如下表所示:
| 集成学习器 | 基础学习器 | 无预处理 |