软件缺陷严重程度预测模型研究与实践
在软件开发过程中,准确预测软件缺陷的严重程度至关重要。传统上,该领域主要采用传统机器学习方法进行缺陷严重程度检测,而现在深度学习方法逐渐被应用于此。下面将详细介绍相关的研究设计、实验结果及分析。
1. 研究设计
-
实验数据集 :使用了六个不同的软件数据集,分别为 CDT、JDT、PDE、Platform、Bugzilla 和 Thunderbird,用于验证所提出的模型。这些数据集来自 msr2013 - bug dataset - master,包含缺陷报告,每个报告有缺陷 ID、描述和严重程度。具体数据集详情如下表:
| 数据集 | 正常缺陷数量 | 正常缺陷百分比 | 次要缺陷数量 | 次要缺陷百分比 | 主要缺陷数量 | 主要缺陷百分比 | 轻微缺陷数量 | 轻微缺陷百分比 | 阻塞缺陷数量 | 阻塞缺陷百分比 | 关键缺陷数量 | 关键缺陷百分比 |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| CDT | 2220 | 77.62 | 146 | 5.10 | 288 | 10.07 | 42 | 1.47 | 58 | 2.03 | 106 | 3.71 |
| JDT | 1906 | 66.71 | 261 | 9.14 | 430 | 15.05 | 104 | 3.64 | 50 | 1.75 | 106 | 3.71 |
| PDE | 2380 | 81.65 | 91 | 3.12 | 2