回归模型(一元线性回归、多项式回归、多重回归、最小二乘法、梯度下降法、随机梯度下降法、小批量梯度下降法)

本文详细介绍了回归模型,包括一元线性回归、多项式回归和多重回归,重点讲解了最小二乘法和梯度下降法求解参数的过程,同时对比了梯度下降的不同变体:随机梯度下降法和小批量梯度下降法,这些方法在预测趋势和评价指标方面具有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归模型

意义:用于预测趋势或对指标进行评价

1.一元线性回归

 fθ(x)=θ0+θ1x\begin{aligned}\ f_{\theta}(x)=\theta_{0}+\theta_{1}x\end{aligned} f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奋进的小hang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值