深度学习都需要学习那些内容?
数学基础如果你能够顺畅地读懂深度学习论文中的数学公式,可以独立地推导新方法,则表明你已经具备了必要的数学基础。
掌握数学分析、线性代数、概率论和凸优化四门数学课程包含的数学知识,熟知机器学习的基本理论和方法,是入门深度学习技术的前提。
因为无论是理解深度网络中各个层的运算和梯度推导,还是进行问题的形式化或是推导损失函数,都离不开扎实的数学与机器学习基础。数学分析在工科专业所开设的高等数学课程中,主要学习的内容为微积分。
对于一般的深度学习研究和应用来说,需要重点温习函数与极限、导数(特别是复合函数求导)、微分、积分、幂级数展开、微分方程等基础知识。在深度学习的优化过程中,求解函数的一阶导数是最为基础的工作。
当提到微分中值定理、Taylor公式和拉格朗日乘子的时候,你不应该只是感到与它们似曾相识。线性代数深度学习中的运算常常被表示成向量和矩阵运算。线性代数正是这样一门以向量和矩阵作为研究对象的数学分支。
需要重点温习的包括向量、线性空间、线性方程组、矩阵、矩阵运算及其性质、向量微积分。
当提到Jacobian矩阵和Hessian矩阵的时候,你需要知道确切的数学形式;当给出一个矩阵形式的损失函数时,你可以很轻松的求解梯度。
概率论概率论是研究随机现象数量规律的数学分支,随机变量在深度学习中有很多应用,无论是随机梯度下降、参数初始化方法(如Xavier),还是Dropout正则化算法,都离不开概率论的理论支撑。
除了掌握随机现象的基本概念(如随机试验、样本空间、概率、条件概率等)、随机变量及其分布之外,还需要对大数定律及中心极限定理、参数估计、假设检验等内容有所了解,进一步还可以深入学习一点随机过程、马尔可夫随机链的内容。
凸优化结合以上三门基础的数学课程,凸优化可以说是一门应用课程。
但对于深度学习而言,由于常用的深