像python一样简单:Docker + Ubuntu18.04部署ORB-SLAM2

0 废话先行

人生苦短,我用python!如果所有事都像python那么简单易上手,这个世界的人将有狸花猫的一丢丢可爱!

基于某些原因,对C++SLAM一窃不通的牛马不得不和ORB-SLAM2干上了,通常是白天在公司当牛马,晚上+凌晨+周末再给**当牛马搞ORB-SLAM2,放假也不得闲,搞得好几次都差点崩溃了。特别是某次夜里两点多重装双系统,装完身心俱疲的睡觉去,第二天醒来时突然发现,天塌了,拿错移动硬盘了,盘里将近4T的东西全部没了,什么都没了,那一刻的恨真如江水滔滔不绝…

后面终于发现,不需要折腾双系统,也不用vmwarevirtualbox虚拟机,直接使用docker即可搞定,妈妈再不用担心我格式化错盘,重新搞个新环境也是分分钟的事,不用再折腾老半天,何宝荣的不如由头来过的梦想也终可实现,牛棚里似乎也有那么一点点光亮…也希望这篇文章给折腾ORB-SLAM2的小白们节省一点点可贵的时间!

1 Prepare

  1. 本文基于win11
  2. 需安装Docker Desktop
    Docker Desktop可以配置国内源,不然image要么下老半天,要么根本下不了。下面这两个国内源,目前还能正常使用。
    "registry-mirrors": [
    	    "https://docker.1ms.run",
    	    "https://docker.xuanyuan.me"
    ]
    
  3. 需开启WSL,并在Docker Desktop中开启Use the WSL 2 based engine,以便于可以在WSL操作docker

2 Container

以下操作都是在WSL中进行

2.1 下载image

docker pull nvidia/cuda:11.0.3-devel-ubuntu18.04  

2.2 允许访问X11

临时允许本地 root 用户(包括 Docker 容器内的进程)访问宿主机的 X11 显示服务(图形界面)

# 在宿主机上执行
sudo apt install x11-xserver-utils
xhost +local:root

# 还应该设置以下参数,以支持容器内的GUI应用能在宿主机上弹出可视化窗口
# -v /tmp/.X11-unix:/tmp/.X11-unix
# -e DISPLAY=$DISPLAY
# -e QT_X11_NO_MITSHM=1
# --ipc=host

2.3 运行Container

docker run -d \
      -v /tmp/.X11-unix:/tmp/.X11-unix \
      -v /mnt/e/docker-ws/shared/:/shared \
      -e DISPLAY=$DISPLAY \
      -e QT_X11_NO_MITSHM=1 \
      --ipc=host \
      --name ub18-orb-slam2 \
      nvidia/cuda:11.0.3-devel-ubuntu18.04  \
      tail -f /dev/null

-v /mnt/e/docker-ws/shared/:/shared
宿主机上的E盘上创建/docker-ws/shared目录,挂载到container中,便于文件交互

2.4 进入container

docker exec -it ub18-orb-slam2 /bin/bash

2.5 查看、启动、停止container

docker ps -a 
docker statr <container-name>
docker stop <container-name>

3 配置

3.1 更换国内源

# 备份
cp /etc/apt/sources.list /etc/apt/sources.list.bak

# 换源
sed -i 's|http://.*archive.ubuntu.com|https://mirrors.aliyun.com|g' /etc/apt/sources.list
sed -i 's|http://.*security.ubuntu.com|https://mirrors.aliyun.com|g' /etc/apt/sources.list

# 更新软件列表
apt update

3.2 安装依赖

apt install -y vim wget git cmake pkg-config build-essential unzip sudo

4 安装eigen3

sudo apt install libeigen3-dev -y

pkg-config --modversion eigen3

3.3.4

5 安装Pangolin 0.6

# 安装依赖
sudo apt-get install \
    libgl1-mesa-dev \
    libglew-dev \
    libboost-dev \
    libboost-thread-dev \
    libboost-filesystem-dev -y
git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin/

# 切换到v0.6版本
git checkout v0.6
git branch
  • (HEAD detached at v0.6)
    master
# 编译安装
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j$(($(nproc) - 2))
sudo make install
# 测试
cd ../examples/HelloPangolin/
mkdir build
cd build/
cmake ..
make
# 运行弹出图形化界面
./HelloPangolin

6 安装opencv 3.4.15

sudo apt-get update

sudo apt-get install -y software-properties-common
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get update

# 2. 安装基础编译工具
apt-get install -y \
    build-essential \
    cmake \
    git \
    pkg-config

# 3. 安装图像I/O依赖库
apt-get install -y \
    libjpeg-dev \
    libpng-dev \
    libtiff-dev \
    libjasper1 \
    libjasper-dev

# 4. 安装视频I/O和编解码库
apt-get install -y \
    libavcodec-dev \
    libavformat-dev \
    libswscale-dev \
    libv4l-dev \
    libx264-dev \
    libxvidcore-dev
#5. 安装GUI依赖(OpenCV 3.x默认使用GTK2)
apt-get install -y \
    libgtk2.0-dev \
    gtk2-engines-pixbuf

#6. 安装Python3支持
apt-get install -y \
    python3-dev \
    python3-numpy

#7. 安装并行计算和优化库
apt-get install -y \
    libtbb-dev \
    libeigen3-dev

#8. 安装其他功能模块依赖
apt-get install -y \
    libdc1394-22-dev \
    libglew-dev \
    libopenexr-dev 
wget -O opencv-3.4.15.zip https://github.com/opencv/opencv/archive/refs/tags/3.4.15.zip
unzip opencv-3.4.15.zip
cd opencv-3.4.15

# mkdir -p .cache/ippicv
# cp ~/ws/7421de0095c7a39162ae13a6098782f9-ippicv_2020_lnx_intel64_20191018_general.tgz ~/ws/opencv-3.4.15/.cache/ippicv/

mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE ..
make -j$(($(nproc) - 2))  # 使用多线程加速
sudo make install
sudo ldconfig
pkg-config --modversion opencv

cd ../samples/cpp/example_cmake
cmake .
make 
./opencv_example  # 弹出窗口

7 下载RGB与Depth图像相关联的python脚本

7.1 下载

wget https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/src/rgbd_benchmark_tools/associate.py

7.2 安装pip和numpy,选择python2或python3

7.2.1 python2

sudo apt install python-pip -y
pip --version
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

7.2.2 python3

sudo apt install python3-pip -y
pip3 --version
pip3 install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

7.3 python3修改associate.py代码

 86     # first_keys = first_list.keys()
 87     # second_keys = second_list.keys()
 	   
        # 修改成以下内容
 86     first_keys = list(first_list.keys())
 87     second_keys = list(second_list.keys())

7.4 关联rgb和depth

cd rgbd_dataset_freiburg3_walking_xyz

# python2
# python ../associate.py rgb.txt depth.txt > ass.txt

# python3
python3 ../associate.py rgb.txt depth.txt > ass.txt

8 编译安装ORB-SLAM2

8.1 下载

cd ~/ws
git clone https://github.com/raulmur/ORB_SLAM2.git

8.2 修改配置

进入到ORB_SLAM2目录下

cd ORB_SLAM2

8.2.1 去掉-march=native,关闭所有编译警告

sed -i 's/-march=native//g' CMakeLists.txt 
sed -i 's/-march=native//g' Thirdparty/DBoW2/CMakeLists.txt 
sed -i 's/-march=native//g' Thirdparty/g2o/CMakeLists.txt 

sed -i '1 a\add_definitions(-w)' CMakeLists.txt 
sed -i '1 a\add_definitions(-w)' Thirdparty/DBoW2/CMakeLists.txt 
sed -i '1 a\add_definitions(-w)' Thirdparty/g2o/CMakeLists.txt 

8.2.2 去掉版本号

vim CMakeLists.txt

# 最终结果
find_package(OpenCV QUIET)
find_package(Eigen3 REQUIRED) 

8.2.3 编译若报'usleep' was not declared in this scope

// vim include/System.h

#include<unistd.h>  // 增加
#include<string>

8.3 编译

bash build.sh

在这里插入图片描述

8.4 运行TUM数据

8.4.1 TUM数据集下载

  1. https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download
  2. 将数据集放到~/ws/下并解压

8.4.2 运行单目相机图像

  1. 解压:

    cd ~/ws
    tar -zxvf rgbd_dataset_freiburg1_xyz.tgz
    
  2. 运行

    cd ~/ws/ORB_SLAM2
    
    Examples/Monocular/mono_tum   \
        Vocabulary/ORBvoc.txt         \
        Examples/Monocular/TUM1.yaml  \
        ~/ws/rgbd_dataset_freiburg1_xyz
    

    在这里插入图片描述

8.4.3 运行深度相机图像

cd ~/ws/ORB_SLAM2

Examples/RGB-D/rgbd_tum \
    Vocabulary/ORBvoc.txt \
    Examples/RGB-D/TUM1.yaml \
    ~/ws/rgbd_dataset_freiburg1_xyz \
    Examples/RGB-D/associations/fr1_xyz.txt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值