spark比mapreduce快的原因

本文探讨了Spark如何通过DAG图减少shuffle和I/O操作,利用内存加速窄依赖任务,并对比其与MapReduce内存管理策略,强调了Spark对内存的高效利用和任务启动时内存预申请的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、spark基于有向无环图DAG生成执行计划,他属于1个改进版的MapReduce,降低了很多不必要的shuffle次数,减少了节点之间的数据交换和磁盘IO,中间无需落盘。针对反复使用的数据可以进行内存cache提高加载使用效率

2、spark基于内存,窄依赖任务的数据都在内存中进行交换

3、spark任务启动时会把需要的内存一次性申请到位才真正运行,而mr是更细的粒度,每个子任务真正运行时才申请内存如果申请不到会等待,也会造成延时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值