模糊分配模型与低成本智能轮椅系统的创新设计
模糊分配模型
分配问题概述
分配问题广泛存在于运营管理、人力资源管理、物流和调度等多个领域,其目标是在一定约束和目标下,将资源分配给任务,以最小化完成任务所需的成本或时间。传统分配问题中,成本或利润值通常被假定为精确和确定的,但在现实世界中,由于信息不完整、人为判断或测量误差等因素,这些值可能存在不确定性或不精确性。模糊逻辑为处理此类不确定性提供了框架,允许使用模糊集和模糊规则。
模糊分配问题的研究进展
许多研究工作都涉及模糊方法的应用:
- 有研究提出了一种使用新型六边形模糊数(HFN)排序程序解决六边形模糊分配问题(FAP)的新方法,该方法旨在在问题的模糊性质下最小化分配成本,且相比现有方法减少了寻找最优解所需的迭代步骤。
- 还有研究提出了一种对广义六边形模糊数进行排序的新程序,并将其应用于解决模糊顺序线性规划问题(LPPs),该排序方法考虑了面积、模式、发散、扩散和权重五个标准。
- 部分研究采用列生成方法,分别优化每列,然后从中选择最佳选项,这种方法可有效解决大规模问题,避免搜索空间的组合爆炸,同时使用梯形模糊数表示问题中的不确定或不精确信息,并采用稳健排序方法比较和排序模糊数。
- 一些研究引入了新型模糊数,如直觉主义六边形模糊数(Intuitionistic HFN),并将其应用于直觉主义形式的模糊运输问题。
模糊数基础
模糊值的先决条件
一个具有隶属函数 φK~: W → [0,1] 的模糊值 K~ 需满足以下条件:
- K~ 是凸的且是正规的。
- 对于 w ∈