支持向量机(SVM)的深入应用
在机器学习的发展历程中,新的技术和算法不断涌现。如今,深度学习备受关注,但它并非机器学习领域出现的首个“重大突破”,也不会是最后一个。二十年前,支持向量机(SVM)曾是机器学习界的热门技术,刚出现时,许多学者对其能否有效工作持怀疑态度。然而,SVM凭借其出色的表现,在图像识别、医学诊断和文本分类等诸多领域找到了用武之地。
重温分类问题
在对两类样本进行精确分类时,类的不可分性是一个常见问题,因为可能不存在一条直线或平面能精确划分不同类别的样本。面对这种情况,现有的机器学习算法和技术提供了多种解决方案:
1. K近邻算法(K - Nearest Neighbors) :当k值较小时,能适应类之间的非线性边界。
2. 逻辑回归(Logistic regression) :通过估计样本属于某一类别的概率来解决问题,即使由于部分重叠无法正确区分类别,也能给出估计值。
3. 特征变换(Feature transformations) :结合特征工程(在学习过程中加入人类创造力和先验知识)和自动多项式扩展(从特征创建幂变换和交互项),找到一组新的特征,通过分隔线或平面区分不同类别。
4. 决策树(Decision trees) :通过对关键特征进行多次分割来构建分类边界,自然地适应非线性情况。
5. 神经网络(Neural networks) :通过不同层神经元的连接自然地创建特征变换并获得非线性近似,但在训练过程处理不当时,估计的变异性会较高