NLP(VII):使用sklearn进行文本情感分类(下)

该文介绍了如何结合gensim和spacy对Twitter数据进行文本处理,通过词向量化和LogisticRegression模型进行情感分析。首先,利用spacy进行分词,然后用gensim的Word2Vec创建词向量,最后使用sklearn训练模型并评估其准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP(VII):使用sklearn进行文本情感分类(下)

这一节我们使用gensim来进行单词的向量化。

使用spacy进行tokenize
import spacy


all_texts = np.array(twitter_train_df['text']).tolist() + np.array(twitter_test_df['text']).tolist()
all_tokenized_texts = []
token_freq_dict = {
   
   }
nlp = spacy.load("en_core_web_sm")

for twitt in all_texts:
  
  doc = nlp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值