POJ3686 KM最大权匹配+高难度建图

本文深入探讨了匈牙利算法的实现细节,该算法用于解决分配问题,特别是最大权匹配问题。通过具体代码展示了如何在二分图中寻找最优匹配,并详细解释了松弛操作和增广路径的概念。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define For(i,j,k) for (i=j;i<=k;i++)
using namespace std;

const int dmax=2750,INF=100000000;
int a[dmax][dmax],slack[dmax],d[dmax];
int lx[dmax],ly[dmax],nx,ny;
bool px[dmax],py[dmax];

bool dfs(int x){
	int i,j;
	px[x]=1;
	For(i,1,ny){
		if (py[i]) continue;
		int t=lx[x]+ly[i]-a[x][i];
		if (t==0){
			py[i]=1;
			if (!d[i] || dfs(d[i])){
				d[i]=x;
				return 1;
			}
		}
		if (t<slack[i])
			slack[i]=t;
	}
	return 0;
}

int main(){
	int i,j,k,m,n,T;
	scanf("%d",&T);
while (T--){
	memset(d,0,sizeof(d));
	scanf("%d%d",&n,&m);
	int tmp=0,read;
	nx=n,ny=n*m;
	For(i,1,n){
		tmp=0;
		For(j,1,m){
			scanf("%d",&read);
			For(k,1,n)
				a[i][++tmp]=-read*k;
		}
	}
	int max;
	For(i,1,nx){
		max=-INF;
		For(j,1,ny)
			if (a[i][j]>max)
				max=a[i][j];
		lx[i]=max;
	}
	memset(ly,0,sizeof(ly));
	For(i,1,nx){
		For(j,1,ny) slack[j]=INF;
		while (1){
			memset(px,0,sizeof(px));
			memset(py,0,sizeof(py));
			if (dfs(i)) break;
			max=INF;
			For(j,1,ny)
				if (!py[j] && slack[j]<max)
					max=slack[j];
			For(j,1,nx)
				if (px[j])
					lx[j]-=max;
			For(j,1,ny)
				if (py[j])
					ly[j]+=max;
				else slack[j]-=max;
		}
	}
	int ans=0;
	For(i,1,ny)
		ans-=a[d[i]][i];
	double sum=ans*1.0/n;
	printf("%.6f\n",sum);
}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值