c++floyd算法

Floyd算法,又称为Floyd-Warshall算法,是一种经典的动态规划算法,用于求解加权图中所有顶点对之间的最短路径问题。该算法由Robert Floyd和Stephen Warshall在1962年分别独立提出。以下是对Floyd算法的详细剖析:

一、算法原理

Floyd算法的基本思想是通过逐步尝试所有顶点作为中间点,来更新任意两点之间的最短路径。算法假设Dis(i,j)为节点i到节点j的最短路径的距离,对于图中的每一个节点k,算法检查是否通过节点k可以使ij的路径更短,即检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立。如果成立,则更新Dis(i,j)Dis(i,k) + Dis(k,j)

二、算法步骤

Floyd算法的实现步骤可以归纳如下:

  1. 初始化
    • 创建一个二维数组dist,用于存储任意两点之间的最短路径长度。初始时,dist[i][j]被设置为节点i到节点j的直接距离(如果节点i和节点j之间有直接连接),否则被设置为无穷大(表示两点之间无直接路径)。
    • 创建一个二维数组path(可选),用于记录最短路径上的中间节点,以便后续恢复最短路径。
  2. 逐步更新
    • 对于图中的每一个节点k(作为中间点):
      • 遍历所有节点对(i, j)
          <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值