监督学习和无监督学习是什么?

本文介绍了机器学习的两种主要类型:监督学习和无监督学习。监督学习涉及提供带有正确答案的数据集,例如预测房价或判断乳腺癌的恶性程度,通常用于回归和分类问题。无监督学习则在没有标签的数据集中寻找结构,如聚类,常应用于新闻分组、社交网络分析和市场细分等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

吴恩达课程机器学习笔记

监督学习和无监督学习是什么?

机器学习算法最常用两个类型就是监督学习和无监督学习。监督学习是指,我们将教计算机如何去完成任务,而在无监督学习中,是让计算机自己进行学习。二者的区别在于,监督学习里的“教”意味着在计算机学习之前,人类要给计算有正确答案;而无监督学习由于没人教,没有正确答案,计算机得自己面对数据集,分析出正确答案。

监督学习

例子1.预测房价

首先用这个例子来介绍什么是监督学习

你收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。

那么关于这个问题,机器学习算法将会怎么帮助你呢?

在这里插入图片描述

我们应用学习算法,可以在这组数据中画一条拟合一条直线,根据这条线我们可以推测出,这套房子可能卖$$150,000 , 当 然 这 不 是 唯 一 的 算 法 。 可 能 还 有 更 好 的 , 比 如 我 们 不 用 直 线 拟 合 这 些 数 据 , 用 二 次 方 程 去 拟 合 可 能 效 果 会 更 好 。 根 据 二 次 方 程 的 曲 线 , 我 们 可 以 从 这 个 点 推 测 出 , 这 套 房 子 能 卖 接 近 ,当然这不是唯一的算法。可能还有更好的,比如我们不用直线拟合这些数据,用二次方程去拟合可能效果会更好。根据二次方程的曲线,我们可以从这个点推测出,这套房子能卖接近

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值