[Python] 递推(讲解 + 刷题)

递推理解

递推是一种算法–或者说解题思路, 是靠找到后项(即将要求的)与前项(已经求出的或者初始的)之间的关系, 从而把旧的后项变成新的前项, 继续求新的后项的方法, 适用于一切有规律的数列.


刷题部分

1.斐波那契数列

题目描述

给出数列1, 1, 2, 3, 5, 8, ...,可以看出从第三个数开始,每一个数都是前两个数的和,这样的数列叫斐波那契数列,请问n个数是多少?

输入输出描述

input:
一个正整数n
output:
输出斐波那契数列的第n个数

AC代码

n = int(input())
# 生成全1列表, 大小n + 1
ls = [1 for i in range(n + 1)]  

# 从第3个数开始, 重复算到第n个数
for i in range(3, n): 
    # 根据递推关系, 计算当前数字
    ls[i] = ls[i - 1] + ls[i - 2]
    
print(ls[n])

2.跳格子

题目描述

如图有编号为1到n+1的格子地图,跳格子游戏规则限制,只能从数字小的格子跳到数字大的相邻格子,请问在如图所示的格子地图中,从给定起点a和终点b,从a跳到b有多少种方案?
题目插图

输入描述

输入两个正整数ab,表示起点和终点位置(a < b)。

输出描述

输出一个正整数,表示从a跳到b有多少种方案。

样例输入输出

input:

1 14

output:

377

AC代码

# 改装版斐波那契数列, 初始值是1和2
a, b = [int(i) for i in input().split()]
n = b - a
dp = [0 for i in range(1, n + 5)]
dp[1], dp[2] = 1, 2
for i in range(3, n + 1):
    dp[i] = dp[i - 1] + dp[i - 2]
print(dp[n])

3.病毒繁殖

题目描述

某种病毒具有很强的繁殖能力,从病毒粒子出生后的第5分钟开始,每分钟可以复制出一个新的病毒粒子,新出生的病毒粒子从第5分钟开始,也可以每分钟复制出一个新的病毒粒子。
举例来说,第1分钟时有一个病毒粒子,此病毒粒子从第5分钟开始复制新的病毒粒子,因此第5分钟时的病毒数量为2个;第6分钟时有复制出新的病毒粒子,因此第6分钟的病毒数量为3个;以此类推,第7分钟时病毒粒子数为4;第8分钟时病毒粒子数为5;第9分钟时,第5分钟复制出的病毒粒子开始复制新的病毒粒子,因此第9分钟时的病毒总数为7;第10分钟时,第6分钟复制出的病毒粒子开始复制新的病毒粒子,因此第10分钟时的病毒粒子总数为10.
计算病毒粒子总数,已知第一分钟时出生了一个病毒粒子,假设所有的病毒粒子不会自动死亡,请计算第N分钟时病毒粒子总数。
例如:前10分钟病毒粒子的总数分别为1, 1, 1, 1, 2, 3, 4, 5, 7, 10

输入描述

输入正整数N(0<N≤30),表示时间

输出描述

输出第N分钟时,病毒粒子的总数

样例输入输出

input:

6

output:

3

AC代码

n = int(input())
ls = [0 for i in range(n + 10)]
for i in range(1, 5):
	ls[i] = 1
	for i in range(4, n + 1):
		ls[i] = ls[i - 1] + ls[i - 4]
print(ls)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值