知识系统中规则方法的研究与展望
在知识系统的研究领域,多种规则方法不断发展,以满足不同场景下的知识表示、分类和预测需求。下面将详细介绍 Multiple Classification Ripple Round Rules(MCRRR)和 Rated MCRDR(RM)这两种方法的特点、性能及未来发展方向。
MCRRR 方法的研究
MCRRR 方法是对经典 Multiple Classification Ripple - Down Rules(MCRDR)的改进,旨在实现基于其他结论的灵活直观规则设定。
规则数量与复杂度
在分析 101 个案例时,该系统需要 477 条规则,远高于以往类似案例数量下的 MCRDR 系统。这表明该领域可能比预期复杂,部分原因是知识库中包含 68 个结论,平均每个结论使用 3.59 次。从案例分析数量与规则增长趋于平稳的关系来看,更复杂的领域需要更多案例才能使规则增长趋于平稳,此领域与之前用于药物审查的 MCRDR 系统在约 150 个案例时呈现出相似的复杂模式。
知识库准确性
知识库的准确性通过以下公式计算:
[
\frac{C_f + R_a - C_{removed}- C_{replaced}}{C_{total}}
]
其中 (C_f) 是找到的结论,(R_a) 是添加的规则,(C_{removed}) 是移除的结论,(C_{replaced}) 是替换的结论。该系统表现出色,准确率迅速提高,在 101 个案例的研究期间内,总体准确率达到了 90% ,不过在研究后期仍存在一些异常情况,如案例 87,首个乳糖不耐受受访者的情况使系统出现偏