在线分类与预测中的符号知识泛化
1. 推理与知识获取
在推理过程中,首先对根节点进行评估,然后逐层向下进行。这个过程会持续进行,直到到达叶节点或者没有子规则评估为真为止。每个节点都会根据其规则对给定的案例进行测试。如果规则评估结果为假,则直接返回 X(无分类);如果规则评估结果为真,则会将案例传递给所有子节点。若子节点的规则评估为真,会返回一个分类列表,这些列表会与其他子节点返回的列表进行整理并返回。若所有子节点的规则都评估为假,即都返回 X,则该节点将返回其自身的分类。与 RDR 一样,根节点的规则始终评估为真,确保在未找到其他分类时返回默认分类。
当出现错误分类时,通过向 MCRDR 树中插入新规则来获取知识。新规则必须能够将专家识别出的错误分类案例与可能到达该新规则的现有存储案例区分开来。用户需要识别当前案例与每个规则的基石案例之间的关键差异。基石案例是用于创建规则的案例,并且在新节点的父节点或其子分支中也进行了分类。这个过程会对所有存储的基石案例持续进行,直到创建出一个复合规则,能够将当前案例与所有可能到达新规则的先前案例唯一区分开来。
2. 混合方法:Rated MCRDR(RM)
2.1 方法概述
本文开发的方法是一种混合方法,称为 Rated MCRDR(RM),它将 MCRDR 与函数拟合技术(即人工神经网络 ANN)相结合。这种混合方式使得函数拟合算法能够学习推理过程中触发规则的模式。MCRDR 结构中规则和结论的位置代表了知识的上下文,而网络会随着时间调整其函数,以捕捉隐藏的关系,这些关系代表了该方法的隐藏上下文。
2.2 RM 算法流程
RM 算法的伪代码如下: </