tech5
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
26、从出版物数据中发现专业领域
本文研究了如何从计算机系工作人员的出版物数据中发现其专业领域。通过利用RFCD代码对出版物标题和所属出版物标题进行匹配,结合字符串匹配算法与相似单词字典,自动为专家分类。研究发现,使用论文和出版物标题结合的方法分类效果最佳,并且新的RFCD代码在分类任务中表现更优。此外,相似单词字典在旧代码分类中显著提高了准确性。文章还提出了实际应用建议及未来研究方向,如跨部门分类、引入更多数据源以及开发智能化分类系统等,旨在提升专家推荐系统的效率和准确性。原创 2025-07-15 15:04:36 · 8 阅读 · 0 评论 -
25、舞蹈合成系统与专家推荐系统解析
本文解析了舞蹈合成系统与专家推荐系统的核心机制及挑战。舞蹈合成系统通过音乐的主观印象,从舞蹈数据库中选择合适的动作片段进行自动编排,并利用Aviutl等工具实现可视化展示;而专家推荐系统则致力于根据用户需求精准定位具备特定领域知识的专业人才。两者都依赖于高质量的数据和高效的匹配算法,在数据处理、信息准确性和用户体验方面仍有优化空间。未来的发展方向包括舞蹈数据细化、舞蹈动作自然衔接、专家信息多源采集以及智能推荐算法的提升。原创 2025-07-14 13:00:52 · 10 阅读 · 0 评论 -
24、特殊儿童社区知识审计与舞蹈合成系统研究
本博文探讨了两个具有重要意义的研究领域:特殊儿童社区的知识审计和舞蹈合成系统研究。在特殊儿童社区研究中,通过知识需求分析、清单分析、流动分析和映射等方法,明确了教育工作者、家长、医学专家和研究人员之间的知识分布与共享情况,为提升特殊儿童服务质量提供了知识管理策略。在舞蹈合成系统研究中,基于用户提供的音乐印象,利用运动捕捉技术和计算机算法实现了舞蹈动作的自动合成,并与专家结果进行比较,提出了优化方向和应用拓展建议。这两个领域的研究展示了科技如何推动社会进步,为未来创新提供了重要参考。原创 2025-07-13 16:46:13 · 7 阅读 · 0 评论 -
23、图书馆营销系统设计与特殊儿童社区知识审计
本文探讨了图书馆营销系统的设计与应用,以及特殊儿童社区的知识审计分析。图书馆营销系统通过数据收集和分析,提升服务质量,并介绍了二维码和RFID技术的应用。同时,文章深入研究了特殊儿童社区的知识管理问题,提出知识共享、政府支持、跨领域合作等解决方案。未来的发展需要克服技术整合、隐私保护、用户接受度等挑战,以推动知识的有效传播和社会进步。原创 2025-07-12 16:39:46 · 9 阅读 · 0 评论 -
22、图书馆营销系统设计及其可能的应用
本文探讨了图书馆营销系统的设计及其可能的应用,重点介绍了RFID和二维码技术在图书馆管理中的作用。通过收集和分析数据,图书馆可以更好地了解读者需求、优化资源配置,并改进服务质量。文章还展示了基于RFID和二维码的营销系统如何帮助图书馆实现高效管理,并提出了未来发展的方向。原创 2025-07-11 09:46:05 · 7 阅读 · 0 评论 -
21、探索数据价值:从社交网络到营销与图书馆管理
本文探讨了数据挖掘技术在不同领域的应用,包括社交网络服务中通过书籍信息进行用户分组和个人特征提取,互联网公告板中获取观众对广告和产品感知的营销知识,以及图书馆营销系统的设计与优化。文章还展望了数据挖掘技术在未来跨领域综合应用的潜力,并指出了其面临的挑战,如数据安全和隐私保护等问题。原创 2025-07-10 13:55:51 · 6 阅读 · 0 评论 -
20、利用个人书籍信息挖掘个性的社交网络服务
本文介绍了 ItemSpider 系统,一个结合社交网络服务(SNS)与个人图书收藏信息的系统,旨在通过数据挖掘技术准确刻画用户特征并寻找兴趣相似的用户群体。系统利用用户的书籍信息作为核心属性,采用欧几里得距离和向量空间方法计算用户之间的相似度,并使用 K-均值聚类算法进行用户分组。实验结果表明,图书收藏重叠比例越高,用户相似度越高,但也揭示了现有聚类技术的局限性。文章还探讨了改进方向,如引入模糊聚类、丰富数据来源及优化用户界面等,以提升系统的智能化和用户体验。原创 2025-07-09 13:09:16 · 4 阅读 · 0 评论 -
19、自然语言访问旅游知识库的方法与实践
本文介绍了一种通过自然语言接口访问旅游知识库的方法,包括注释搜索、元素识别和信息搜索三个核心模块。通过具体的查询处理示例和评估结果,验证了该方法的有效性,并分析了其优势和局限性。这种方法为非专业用户提供了便捷查询OWL内容的方式,在旅游信息查询领域具有广阔的应用前景。原创 2025-07-08 14:09:48 · 6 阅读 · 0 评论 -
18、利用人工智能技术挖掘马来西亚政治社交网络与旅游知识库自然语言查询
本文探讨了利用人工智能技术进行马来西亚政治社交网络挖掘以及通过自然语言接口访问旅游知识库的方法。在网络挖掘部分,使用人工免疫系统(AIS)分析反对党和执政党领袖博客的在线影响力,展示了在线社区对政治局势的重要影响。在旅游领域,提出了一种结合自然语言处理、本体和语义网技术的查询方法,使用户能够更便捷地从旅游知识库中获取信息。原创 2025-07-07 11:25:02 · 7 阅读 · 0 评论 -
17、信息扩散模型与马来西亚政治社交网络挖掘
本博文探讨了信息扩散模型(包括独立级联模型和线性阈值模型)在不同社区结构网络中的行为特征,并结合人工免疫系统(AIS)方法对马来西亚政治社交网络进行挖掘与分析。研究揭示了社区结构对信息传播的影响,以及网络平台在马来西亚第12届大选中对选民决策的重要作用。通过构建基于AIS的网络挖掘系统,实现了对政治相关信息的有效检索与可视化分析,为理解政治信息传播机制提供了理论支持和实践工具。原创 2025-07-06 10:37:20 · 3 阅读 · 0 评论 -
16、信息扩散模型揭示了什么?
本文深入探讨了信息扩散模型的基本原理及其在不同社区结构网络中的行为特征。介绍了独立级联(IC)模型和线性阈值(LT)模型,并通过键渗流方法估计节点的影响度。研究构建了广义随机(GR)网络以对比原始网络的社区结构差异,并利用可视化方法揭示了社区结构对信息扩散过程的影响。实验使用了博客网络和维基百科网络的真实数据,验证了度较大的节点在信息传播中具有更高的影响力,同时发现IC和LT模型的平均曲线呈现相反趋势。此外,文章还讨论了信息扩散模型在市场营销、舆情分析和社交网络设计等领域的实际应用价值,以及未来可能的研究方原创 2025-07-05 15:01:21 · 6 阅读 · 0 评论 -
15、形式概念分析在协作式电子学习及信息传播模型中的应用探索
本文探讨了形式概念分析(FCA)在知识获取和博物馆藏品管理中的应用,以及信息扩散模型在社会网络结构中的传播特性。通过介绍AnnotationSleuth软件及其在虚拟南太平洋博物馆项目中的使用,展示了FCA在构建可扩展知识管理系统和灵活导航数字对象集合方面的潜力。同时,研究了独立级联(IC)模型和线性阈值(LT)模型在不同社区结构下的信息扩散行为,揭示了社区结构对扩散过程的影响机制。这些研究成果为信息资源管理、社会网络分析及数字博物馆发展提供了理论支持和实践指导。原创 2025-07-04 15:47:54 · 5 阅读 · 0 评论 -
14、利用形式概念分析实现合作式电子学习
本文探讨了如何利用形式概念分析(FCA)实现合作式电子学习,通过构建语义网和概念格结构,将用户的浏览痕迹转化为可推理的结构化知识。系统KAPUST基于用户行为数据进行知识发现,并支持查询推荐,促进了学生之间的协作与知识共享。博文还详细介绍了实验结果、系统架构以及未来优化方向,为电子学习环境下的知识管理和智能推荐提供了理论依据和实践参考。原创 2025-07-03 10:02:36 · 4 阅读 · 0 评论 -
13、在线分类与预测中的创新方法及电子学习中的概念分析应用
本文探讨了在线分类与预测中的创新方法——RM 方法,及其在电子学习中结合形式概念分析(FCA)的应用。RM 方法通过融合专家知识和神经网络,实现了快速学习和良好的预测泛化能力,在多个数据集上表现出优于传统方法的性能。同时,FCA 在电子学习系统 KAPUST2 中的应用展示了其在构建语义网、指导学生查询和提升教学效果方面的潜力。研究还展望了 RM 方法和 FCA 的综合应用前景及未来发展方向。原创 2025-07-02 11:37:20 · 7 阅读 · 0 评论 -
12、在线分类与预测中的符号知识泛化
本文介绍了一种结合符号推理与函数拟合技术的混合方法——Rated MCRDR(RM),用于解决在线分类与预测任务。RM 方法融合了 MCRDR 的快速学习能力和人工神经网络(ANN)的泛化能力,通过规则树进行符号推理,并利用神经网络捕捉隐藏的关系和模式。文章详细描述了 RM 的推理机制、知识获取过程、神经网络组件的设计以及新节点的添加策略。实验结果表明,RM 在在线分类任务中表现出与 MCRDR 相当的学习速度,在预测任务中则展现出优于反向传播神经网络的泛化能力。此外,RM 支持动态扩展输入空间,能够在不破原创 2025-07-01 09:35:28 · 5 阅读 · 0 评论 -
11、知识系统中规则方法的研究与展望
本文探讨了知识系统中两种规则方法——Multiple Classification Ripple Round Rules(MCRRR)和Rated MCRDR(RM)的研究现状与未来发展方向。MCRRR作为对经典MCRDR的改进方法,展现出较高的准确性和规则创建效率,但也面临实现复杂度增加的问题;RM方法则侧重于处理隐藏和动态上下文,以提升知识系统的泛化能力。文章还展望了这两种方法在更复杂领域的应用前景,并提出了系统功能扩展和算法优化的可能方向,为RDR社区的发展提供了重要参考。原创 2025-06-30 14:53:01 · 4 阅读 · 0 评论 -
10、多分类波纹规则的初步研究
本博文介绍了多分类波纹下降规则(MCRDR)及其扩展方法的研究,包括嵌套波纹下降规则(NRDR)、重复推理多分类波纹下降规则(RIMCRDR),以及改进的多分类波纹循环规则(MCRRR)。文章探讨了这些方法在处理多分类问题时的结构设计、推理机制和关键问题(如循环检测与基石案例确定),并通过披萨推荐领域的测试验证了MCRRR的有效性和可扩展性。研究还指出了未来优化方向,如提升基石案例确定效率、复杂领域测试及与其他方法的结合应用。原创 2025-06-29 10:38:57 · 4 阅读 · 0 评论 -
9、基于关联规则挖掘的新型分类算法及多分类波纹规则研究
本文介绍了一种基于关联规则挖掘的新型分类算法,通过ECR-CARM生成规则、pCARM修剪冗余规则以及prCARM构建分类器,显著提高了分类效率和准确性。同时,研究对多分类波纹规则(MCRDR)方法进行了增强,使专家能够基于现有结论创建新规则,提升了其在复杂分类问题中的适用性。实验结果显示,该方法在多个数据集上表现优异,并具有广泛的应用前景。原创 2025-06-28 15:29:12 · 4 阅读 · 0 评论 -
8、基于信息增益上界的剪枝策略与关联规则分类算法
本文介绍了两种用于数据分类挖掘的算法:基于信息增益上界的剪枝策略和基于关联规则的ECR-CARM分类算法。剪枝策略通过预剪枝和后剪枝方法有效减少子图搜索空间,提升Cl-GBI算法效率;ECR-CARM则利用ECR-树结构高效挖掘满足支持度和置信度的分类规则,并通过冗余规则剪枝和规则缩减优化结果。实验表明,这两种算法在合成数据集和真实肝炎数据集上均表现出色,具有较高的准确性和运行效率,未来可进一步优化并应用于医疗、金融等领域。原创 2025-06-27 11:05:33 · 5 阅读 · 0 评论 -
7、关联规则挖掘与图挖掘中的高效策略
本文探讨了数据挖掘领域的两个重要方向:关联规则挖掘和图挖掘。关联规则挖掘部分提出了一种基于Choquet积分的度量聚合方法,通过综合多个度量视角提升规则评估的全面性;图挖掘部分介绍了Cl-GBI算法及其剪枝优化策略,通过伪合并和信息增益上界剪枝提高判别性子图挖掘的效率。文章还展望了未来研究方向,如更复杂的度量聚合方法、基于用户意见的容量构建以及算法的并行化和分布式计算。原创 2025-06-26 12:45:30 · 3 阅读 · 0 评论 -
6、基于客观兴趣度度量聚合的关联规则挖掘
本文提出了一种基于客观兴趣度度量聚合的关联规则挖掘方法,通过使用Choquet积分作为高级聚合算子,结合基于数据构建的容量函数,以有效处理传统方法中因度量相关性导致的结果偏差问题。实验在两个不同性质的规则集上进行,验证了该方法能够根据不同的业务需求和数据特点,挖掘出最有价值的关联规则。原创 2025-06-25 14:35:18 · 4 阅读 · 0 评论 -
5、自动数据库创建与目标模型学习
本文介绍了一种基于在线提升学习的自主学习框架,能够通过实时处理视频或图像序列,实现自动的目标模型学习和视觉对象数据库构建。整个过程无需初始训练或大量人工干预,仅需一次点击初始化,即可在后续过程中自动更新分类器并生成高质量的正负样本数据。实验结果表明,该框架在多个复杂场景下均表现出高准确性和稳定性,为未来迁移学习、多任务学习等相关研究提供了有效支持。原创 2025-06-24 15:34:43 · 6 阅读 · 0 评论 -
4、数据流聚类与自动数据库创建及对象模型学习研究
本研究探讨了数据流聚类与自动数据库创建及对象模型学习的相关方法。在数据流聚类方面,提出了一个高效的两阶段框架,利用统计摘要和层次结构实现灵活的聚类分析,并验证了其高效性和高质量结果。针对对象模型学习问题,提出了一种基于在线提升技术的自主学习方法,结合跟踪与分类流程,实现了从视频序列中自动生成训练样本并构建鲁棒的对象模型。研究还总结了现有方法的局限性,并展望了未来在多类型对象检测任务拓展和算法优化方面的潜力。原创 2025-06-23 09:56:55 · 5 阅读 · 0 评论 -
3、演化数据流聚类:在线与离线处理的高效框架
本文介绍了一种用于演化数据流聚类的高效两阶段框架,包括在线近期偏置统计维护和离线聚类阶段。通过多级汇总统计层次结构和增量近期偏置近似方法(如IncWA算法),该框架能够灵活地在不同时间范围内对数据流进行高效聚类分析,并适用于大规模数据场景。原创 2025-06-22 13:54:58 · 6 阅读 · 0 评论 -
2、强化学习自适应转移率实验与数据流聚类框架
本博客探讨了强化学习中的自适应转移率优化与基于在线近期偏置近似的数据流聚类框架。在强化学习部分,介绍了AdaTran算法及其在不同任务场景下的性能表现,展示了其对误导性转移知识的鲁棒性以及适应能力。在数据流聚类部分,提出了一种高效的框架,通过近期偏置近似方法动态维护数据摘要统计信息,从而提升聚类效率和空间利用率。博客还分析了两种方法的实际应用场景及未来研究方向,为机器学习领域的发展提供了新的思路和解决方案。原创 2025-06-21 11:53:50 · 5 阅读 · 0 评论 -
1、知识获取与强化学习中的自适应转移率实验
本文探讨了知识获取在人工智能领域的重要性,并聚焦于强化学习中的转移学习问题。针对传统静态转移率算法在任务相似度变化时的不足,提出了一种通用自适应转移方法(AdaTran),通过将转移率优化问题转化为连续多臂老虎机问题,实现动态调整转移率参数ϕ,从而提升学习速度和鲁棒性。实验结果表明,AdaTran在不同任务相似度下均表现出良好的性能,具有广泛的应用前景。原创 2025-06-20 09:13:17 · 3 阅读 · 0 评论