Langfuse功能介绍及其作用

以下是关于如何利用 Langfuse 对 RAG(检索增强生成)系统进行全面监控、分析和优化的详细指南,涵盖核心功能、集成方法、关键应用场景及最佳实践:


一、Langfuse 核心功能与 RAG 适配性

1. 核心能力
功能 在 RAG 中的用途 优势
Trace 记录 跟踪单次请求的全链路(检索→生成→用户反馈) 可视化分析延迟、错误点
Prompt 版本管理 对比不同提示词的效果(如严格约束 vs 自由生成) 量化优化迭代效果
输出质量评估 人工/自动标注答案质量(事实性、流畅性) 识别高频错误类型
成本监控 统计 API 调用费用(如 OpenAI token 消耗) 优化性价比
2. 为什么适合 RAG?
  • 多阶段追踪:独立记录检索和生成阶段,便于定位问题。
  • 数据关联:将用户反馈与具体提示词、检索结果关联分析。

二、集成 Langfuse 到 RAG 系统

1. 安装与初始化
pip install langfuse
from langfuse import Langfuse

# 初始化(从环境变量读取 LANGFUSE_KEY/SECRET)
langfuse = Langfuse()
2. 关键集成点示例
(1) 记录检索阶段
def retrieve(query):
    trace = langfuse.trace(name="retrieval", input=query)
    
    # 模拟检索操作
    contexts = vector_db.search(query, top_k=3)
    
    # 记录检索结果
    trace.span(
        name=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值