主流RAG框架测试指南
1. LangChain测试要点
核心测试场景:
- 组件串联测试:验证检索器、生成器和记忆模块的协同工作
- 长对话测试:检查对话历史管理能力(建议测试8+轮对话)
- 文档处理测试:尝试上传PDF/PPT等非结构化文档
常见陷阱:
- 注意默认检索器可能不适合专业领域
- 对话历史拼接方式可能导致上下文丢失
- 文档分块策略影响检索精度
测试技巧:
# 快速验证pipeline的示例代码
from langchain.evaluation import load_evaluator
evaluator = load_evaluator("qa")
result = evaluator.evaluate(
examples=[...],
predictions=[...]
)
2. LlamaIndex测试方案
重点测试项:
- 索引构建效率(测试百万级文档处理时间)
- 混合检索能力(同时测试关键词+向量检索)
- 增量更新测试(模拟知识库日常更新场景)
性能基准:
- 10万文档索引应在5分钟内完成
- 单查询响应时间<300ms(GPU环境)
- 准确率@5应达到75%以上(领域适配后)
**优化检查表:
✓ 索引时是否启用embedding缓存
✓ 检索器是否配置了合适的chunk_size
✓ 是否启用了HyDE优化策略
3. Haystack专业测试
企业级测试流程:
-
检索组件压力测试
- 模拟100+并发查询
- 测试故障转移机制
-
生成质量验证
- 使用FactCC评估事实一致性
- 检测幻觉率(建议阈值<15%)
-
端到端AB测试
# 典型AB测试代码结构 from haystack.testing import Benchmark benchmark = Benchmark() benchmark.compare( pipeline_a=my_rag_pipeline, pipeline_b=baseline_pipeline, queries=test_queries )
4. Semantic Kernel测试策略
微软系产品特别注意事项: