主流RAG框架测试指南

主流RAG框架测试指南

1. LangChain测试要点

核心测试场景:

  • 组件串联测试:验证检索器、生成器和记忆模块的协同工作
  • 长对话测试:检查对话历史管理能力(建议测试8+轮对话)
  • 文档处理测试:尝试上传PDF/PPT等非结构化文档

常见陷阱:

  • 注意默认检索器可能不适合专业领域
  • 对话历史拼接方式可能导致上下文丢失
  • 文档分块策略影响检索精度

测试技巧:

# 快速验证pipeline的示例代码
from langchain.evaluation import load_evaluator
evaluator = load_evaluator("qa")
result = evaluator.evaluate(
    examples=[...],
    predictions=[...]
)
2. LlamaIndex测试方案

重点测试项:

  • 索引构建效率(测试百万级文档处理时间)
  • 混合检索能力(同时测试关键词+向量检索)
  • 增量更新测试(模拟知识库日常更新场景)

性能基准:

  • 10万文档索引应在5分钟内完成
  • 单查询响应时间<300ms(GPU环境)
  • 准确率@5应达到75%以上(领域适配后)

**优化检查表:
✓ 索引时是否启用embedding缓存
✓ 检索器是否配置了合适的chunk_size
✓ 是否启用了HyDE优化策略

3. Haystack专业测试

企业级测试流程:

  1. 检索组件压力测试

    • 模拟100+并发查询
    • 测试故障转移机制
  2. 生成质量验证

    • 使用FactCC评估事实一致性
    • 检测幻觉率(建议阈值<15%)
  3. 端到端AB测试

    # 典型AB测试代码结构
    from haystack.testing import Benchmark
    benchmark = Benchmark()
    benchmark.compare(
        pipeline_a=my_rag_pipeline,
        pipeline_b=baseline_pipeline,
        queries=test_queries
    )
    
4. Semantic Kernel测试策略

微软系产品特别注意事项:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值