探索人工神经网络的架构与训练过程
1 引言
人工神经网络(ANN)是一种模拟人类大脑神经元之间连接和信息传递的计算模型。它通过模仿生物神经元的工作原理,能够在复杂的任务中表现出色。神经网络的架构定义了其多个神经元是如何相对于彼此排列或放置的。这些排列主要是通过指导神经元的突触连接来构建的。
在本篇文章中,我们将深入探讨人工神经网络的主要架构及其训练过程,帮助读者理解神经网络的基本原理和实际应用。我们将从简单的单层前馈网络开始,逐步深入到更为复杂的多层前馈网络、循环网络和网状网络,并详细解释训练过程中的关键技术。
2 人工神经网络的主要架构
2.1 单层前馈架构
单层前馈网络是最简单的神经网络结构之一,它只有一个输入层和一个输出层,且信息流动方向单一(即从输入层到输出层)。这种结构适用于简单的线性分类和过滤问题。
- 输入层 :负责接收来自外部环境的信息(数据)、信号、特征或测量值。
- 输出层 :负责产生和展示最终的网络输出,这些输出是由前一层神经元处理后得到的结果。
2.2 多层前馈架构
多层前馈网络比单层前馈网络更加复杂,它包含一个或多个隐藏层。这些隐藏层由神经元组成,负责提取与被分析过程或系统相关的模式。多层前馈网络广泛应用于函数逼近、模式分类、系统