反向传播算法详解与应用
1. 反向传播算法概述
反向传播算法(Backpropagation)是训练多层感知器(Multilayer Perceptron, MLP)网络的核心技术之一。它通过监督学习的方式,利用平方误差函数来衡量网络输出与期望输出之间的偏差,并通过梯度下降法不断调整网络中的权重和阈值,从而使得网络能够逐渐逼近预期的功能。本文将深入探讨反向传播算法的工作原理及其在神经网络训练中的应用。
1.1 近似误差的定义
为了衡量网络输出神经元产生的响应与相应期望值之间的偏差,定义了一个函数来表示近似误差。具体来说,对于第 ( k ) 个训练样本,使用平方误差函数来衡量输出神经元产生的结果相对于给定样本的局部性能:
[
E(k) = \frac{1}{2} \sum_{j=1}^{n_3} \left(d_j(k) - Y_j^{(3)}(k)\right)^2
]
其中,( Y_j^{(3)}(k) ) 是网络第 ( j ) 个输出神经元对于第 ( k ) 个训练样本产生的值,而 ( d_j(k) ) 是相应的期望值。
1.2 全局性能的测量
假设训练集由 ( p ) 个样本组成,可以通过定义的“均方误差”来计算反向传播算法的全局性能:
[
E_M = \frac{1}{p} \sum_{k=1}^{p} E(k)
]
其中,( E(k) ) 是在每个样本上的平方误差。
2. 反向传播算法的实现步骤
反向传播算法的描述被分为两部分:第一部分涉及调整输出层的突触权重矩