集体周期运动协调:多代理系统中的分布式算法实现
1. 引言
在多代理系统中,协调的周期运动在涉及重复运动的应用中扮演着重要角色,例如合作巡逻、绘图、采样或监视。这些应用需要多个代理(如机器人或无人机)协同工作,以实现特定的任务目标。通过分布式算法,每个代理仅依靠本地信息与其他代理互动,从而实现全局的协调运动。本文将详细介绍如何通过分布式算法实现多代理系统的集体周期运动,并分析影响这些运动的关键因素。
2. 笛卡尔坐标耦合
2.1 第一种类型的算法
为了实现集体周期运动,首先引入了笛卡尔坐标耦合的概念。通过将笛卡尔坐标耦合引入现有的分布式共识算法中,可以针对单积分器动力学和双积分器动力学分别生成不同的集体运动模式。具体来说,这些运动模式包括在三维空间中的会合、圆形模式和对数螺旋模式。
2.1.1 单积分器动力学
对于单积分器动力学,代理的运动方程可以表示为:
[ \dot{r}_i = u_i, \quad i = 1, \ldots, n ]
其中 ( r_i \in \mathbb{R}^m ) 是位置,( u_i \in \mathbb{R}^m ) 是与第 ( i ) 个代理相关的控制输入。引入具有笛卡尔坐标耦合的分布式算法后,控制输入可以表示为:
[ u_i = - \sum_{j=1}^n a_{ij} C (r_i - r_j), \quad i = 1, \ldots, n ]
其中 ( a_{ij} ) 是与有向图 ( G = (V, E) ) 相关的邻接矩阵 ( A \in \mathbb{R}^{n \time