
工具与生态
文章平均质量分 90
佑瞻
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangChain JSON 数据加载全攻略:从基础解析到元数据定制的实战指南
JSONLoader 支持通过函数自定义元数据提取逻辑:python# 定义元数据提取函数# 从记录中提取sender_name和timestamp_ms# 修改source为相对路径try:pass# 加载数据并应用元数据函数jq_schema='.messages[]', # 遍历messages数组content_key="content", # 内容来自content字段metadata_func=metadata_func # 应用自定义元数据函数。原创 2025-06-18 18:06:21 · 558 阅读 · 0 评论 -
LangChain 文档加载全攻略:从目录批量处理到格式解析的实战指南
DirectoryLoader 默认使用 UnstructuredLoader,但我们可以通过loader_cls参数灵活切换:python# 使用TextLoader加载(纯文本提取,不解析格式)print(f"TextLoader加载结果:{docs[0].page_content[:50]}")# 专门加载Python代码文件print(f"PythonLoader加载结果:{docs[0].page_content[:50]}")python# 自定义分隔符、字段名等解析参数。原创 2025-06-18 17:54:29 · 542 阅读 · 0 评论 -
LangChain 网页加载全攻略:从简单解析到向量搜索的实战指南
通过今天的分享,我们系统学习了 LangChain 处理网页和 HTML 的全流程方案:从简单的文本提取,到智能布局分析;从单页面解析,到跨页面向量检索。快速原型阶段:优先使用 WebBaseLoader+BeautifulSoup,快速验证想法结构化数据需求:UnstructuredLoader 的高级解析模式是最佳选择问答系统构建:结合向量搜索实现 RAG 应用,提升回答准确性动态内容处理:Playwright+UnstructuredLoader 组合应对复杂场景。原创 2025-06-18 17:44:33 · 975 阅读 · 0 评论 -
手把手教你用 LangChain 高效加载 PDF:从文本提取到多模态处理全攻略
通过今天的分享,我们系统学习了 LangChain 处理 PDF 的全流程方案:从最简单的文本提取,到向量索引构建;从复杂布局分析,到多模态直接处理。简单文本提取:优先使用 PyPDFLoader,轻量高效问答系统:PyPDFLoader + 向量数据库是性价比最高的方案结构化数据需求:Unstructured 的 hi_res 模式能满足大多数场景扫描文档或复杂图像:多模态模型方案是未来趋势。原创 2025-06-18 17:36:19 · 1055 阅读 · 0 评论 -
深度解析 Poetry 依赖管理与 pyproject.toml 配置:从入门到实战
当我们在中声明依赖时,Poetry 会自动处理复杂的依赖关系:bash# 查看精确依赖版本树它通过文件记录每一个依赖的精确版本,确保团队成员和生产环境使用完全一致的依赖版本。当依赖冲突发生时,Poetry 会优先选择满足所有约束的最高兼容版本,避免手动调整的麻烦。通过 Poetry 和依赖声明标准化:所有依赖集中管理,版本约束清晰环境配置自动化:告别手动创建激活虚拟环境的烦恼构建发布一体化:从开发到生产的环境一致性保障。原创 2025-04-15 16:43:02 · 1380 阅读 · 0 评论 -
LangServe 核心组件 add_routes 深度解析:快速构建 LangChain 服务化接口
通过add_routes,我们实现了从本地链逻辑到 HTTP 服务的丝滑转换,结合和官方模板,大幅降低了 AI 应用的服务化门槛。这一系列工具的设计理念,正是 LangChain “让复杂架构简单化” 的最佳体现。如果你正在构建 RAG 应用或需要将 LLM 链部署为服务,不妨试试这些工具。原创 2025-04-15 16:51:03 · 715 阅读 · 0 评论 -
手把手教你用 Poetry 高效管理 Python 依赖与虚拟环境
Poetry 真的是我们 Python 开发中管理依赖和虚拟环境的好帮手,用它能省去很多繁琐的操作,让我们把精力集中在代码开发上。希望大家通过这篇文章,能熟练掌握 Poetry 的基本用法,告别依赖管理的烦恼。后续会分享更多 Python 开发实用技巧,关注我,一起高效编程~原创 2025-04-15 16:27:30 · 899 阅读 · 0 评论 -
LlamaIndex评估工具集成与生态拓展:DeepEval/UpTrain/Ragas 实战指南
功能:衡量答案摘要的完整性和准确性场景:文档摘要、长文本总结等场景参数:可配置摘要关键信息保留比例通过集成 DeepEval、UpTrain、Ragas 等工具,我们突破了单一框架的评估局限,构建了全方位的评估生态。这些工具就像不同领域的专家,共同为 LLM 应用的质量把把关。原创 2025-06-15 15:58:04 · 766 阅读 · 0 评论 -
LlamaIndex Pandas 查询引擎:自然语言一键转 Pandas 代码的神器
拆解复杂查询为多个步骤自定义每个处理环节组合不同模块实现复杂逻辑python# 加载数据!# 1. 输入组件:接收查询字符串# 2. LLM组件:负责生成Pandas代码# 3. Pandas指令解析器:执行生成的代码# 4. 响应合成器:将结果转为自然语言response_prompt = PromptTemplate("根据查询结果回答:{pandas_output}")原创 2025-06-13 12:28:55 · 850 阅读 · 0 评论 -
生产级 RAG 应用开发实战:索引构造与查询分离实现详解
角色分工:管理员专注索引质量,用户专注高效查询;性能跃升:从 “同步阻塞” 到 “异步并发”,满足企业级吞吐量需求;可维护性:独立的管理后台支持索引全生命周期管理,降低运维成本。这一设计不仅是技术选择,更是从 “玩具级 Demo” 到 “生产级系统” 的关键跨越。如果你在实际开发中遇到索引构建效率问题,可参考文档中的分层架构,优先实现索引构造的异步化与持久化。原创 2025-06-03 16:42:25 · 1397 阅读 · 0 评论 -
Uvicorn 启动配置全解析:路径定位、端口设置与进程管理
路径定位:通过模块路径 / 文件路径 +--app-dir精准加载应用;端口管理:开发用命令行参数,生产用环境变量 + SSL;进程优化:单进程开发,多进程生产,结合 Gunicorn 实现健壮的进程管理。如果本文对你有帮助,欢迎。原创 2025-06-04 21:57:32 · 1379 阅读 · 0 评论 -
FastAPI 与 Uvicorn 深度集成:从开发到生产的全流程实践
FastAPI 与 Uvicorn 的组合,凭借 ASGI 协议的标准化和生态工具的深度集成,成为现代异步 API 开发的黄金搭档。从开发阶段的自动重载,到生产环境的多进程管理与 HTTPS 配置,再到多模块项目的结构设计,每一个环节都体现了「高效、可靠、可扩展」的理念。如果本文对你有帮助,欢迎。原创 2025-06-04 21:52:31 · 749 阅读 · 0 评论 -
ASGI 协议深度解析与 Uvicorn 生态集成实战指南
ASGI 协议的核心,是定义了服务器与应用之间的异步交互接口。一个符合 ASGI 规范的应用,必须是一个异步可调用对象scope:包含请求类型(如httpwebsocket)、协议版本、路径、头部等元数据的字典;receive:用于接收请求体或 WebSocket 消息的异步通道;send:用于发送响应或 WebSocket 消息的异步通道。代码示例:最简 ASGI 应用的交互逻辑python# 处理HTTP请求# 发送响应头})# 发送响应体})# 处理WebSocket连接(扩展场景)原创 2025-06-04 21:47:45 · 1176 阅读 · 0 评论 -
Uvicorn:Python ASGI 服务器核心原理与全场景实践指南
还记得 WSGI 时代的痛点吗?当服务器处理一个包含数据库查询或网络请求的请求时,整个线程会被死死阻塞,导致后续请求排队等待。这种「单线程串行」模式在实时聊天、高并发 API 等场景下举步维艰。ASGI 的出现,如同为 Python 异步生态搭建了统一的「高速公路」。它定义了服务器与应用之间的异步交互标准,允许服务器同时处理多个长连接(如 WebSocket)和 I/O 密集型任务,通过事件循环动态调度资源,让 Python 真正具备了应对现代高并发场景的能力。原创 2025-06-04 21:40:16 · 1493 阅读 · 0 评论 -
用 Puppeteer 搭建 MCP 服务器:功能详解与 npx 启动全攻略
在浏览器自动化领域,Puppeteer 凭借其强大的 API 和灵活的配置能力,成为开发者实现网页交互、截图、脚本执行的首选工具。本文将在详细介绍 Puppeteer MCP 服务器核心功能的基础上,重点解析如何通过,让本地开发与调试更加便捷高效。原创 2025-04-27 10:35:08 · 2633 阅读 · 0 评论 -
破解 URL 抓取难题:MCP Fetch 服务器核心技术全解析
通过完整的代码实现,我们看到 MCP Fetch 服务器如何通过参数校验、异步 IO、合规检查、内容处理等模块,构建起健壮的 URL 抓取能力。这些代码细节不仅解决了实际开发中的常见问题,更体现了工程化设计的核心思想 ——在复杂场景中建立有序的规则体系。如果你在开发中需要处理网络内容获取,不妨直接复用文中的参数模型和核心函数,根据实际需求调整代理配置和内容转换逻辑。原创 2025-04-27 08:40:16 · 874 阅读 · 0 评论 -
Python 项目管理神器 uv 深度解析:从初始化到发布的全流程指南
uv 支持生成标准的 Python 发行包(源包和 wheel 包),只需:bashuv build # 在当前目录构建项目ls dist/ # 查看生成的发行包(.tar.gz和.whl文件)构建时支持指定源目录或工作区中的子包:bashuv build src/my_package # 构建指定目录的包uv build --package my_lib # 构建工作区中的指定包。原创 2025-04-26 10:12:12 · 4058 阅读 · 0 评论 -
用 Rust 重构 Python 开发体验:全能工具 uv 深度指南
uv 的价值不仅在于速度提升,更重要的是通过功能整合让开发者专注于代码本身,而非工具切换。当项目管理、依赖解析、版本控制都能用一套统一的命令体系完成时,我们终于可以摆脱 "工具工程师" 的困境,把精力放回业务逻辑和算法实现上。现在就尝试用uv init创建你的第一个项目,体验 Rust 带来的丝滑操作吧!如果在使用中遇到具体问题,欢迎在评论区留言,我们会针对高频问题推出进阶教程。原创 2025-04-26 10:05:45 · 758 阅读 · 0 评论 -
MCP 客户端开发实战:从协议接入到 LLM 工具调用的全链路解析
在开发 AI 应用时,我们常常面临这样的挑战:如何让大语言模型(LLM)高效调用外部工具,同时又不被复杂的底层通信协议束缚?MCP(模型上下文协议)通过标准化的客户端实现,为这个问题提供了优雅的解决方案。今天,我们结合具体代码,深入解析 MCP 客户端的核心实现逻辑,看看如何通过几行关键代码,实现 LLM 与外部工具的无缝协作。原创 2025-04-24 11:24:43 · 762 阅读 · 0 评论 -
MCP 高级特性:资源管理与提示模板如何支撑复杂 AI 场景开发
python# 预定义提示模板description="解释指定编程语言的代码逻辑",description="编程语言(如python、java)",),description="需要解释的代码片段",# 注册提示列表接口# 生成提示消息if name!raise ValueError("提示未找到")messages=[text=f"请解释这段{arguments['language']}代码:\n\n{arguments['code']}"原创 2025-04-24 11:21:38 · 1021 阅读 · 0 评论 -
MCP 协议入门 —— 从痛点到架构设计
MCP 协议的出现,为 AI 应用开发带来了 “一次接入、多处复用” 的高效模式。通过标准化的上下文交互接口,我们不再受困于复杂的集成逻辑,而是将精力聚焦于 AI 模型本身的优化和业务场景的创新。无论是开发智能客服、数据分析工具还是代码助手,MCP 都能成为连接 AI 与外部世界的 “通用适配器”。如果你正在寻找降低 AI 应用开发成本的解决方案,不妨尝试基于 MCP 协议构建你的服务端架构。文中的代码示例可直接在 CSDN 复制使用,欢迎在评论区分享你的实践经验。原创 2025-04-24 11:12:45 · 725 阅读 · 0 评论 -
手把手教你在 Dify 中构建智能助手:从模板入门到自定义工具调用实战
如果模板功能不够用,我们可以从零创建一个专属智能助手,深度定制逻辑。通过 Dify 构建智能助手,核心在于 “明确任务逻辑→精准编写提示词→合理配置工具”。对于开发者来说,模板是快速验证想法的捷径,而自定义配置则能满足个性化需求。从简单任务开始(如单网页抓取),逐步增加复杂度(如多网页对比、结合知识库);善用 Dify 的日志分析功能,查看每次对话中 AI 的推理过程和工具调用记录,针对性优化提示词;原创 2025-04-23 16:46:08 · 2026 阅读 · 0 评论